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CHAPTER 1 
 
  

Dissertation organization 
 

The eight chapters of this dissertation describe the importance of a number of novel 

approaches to chemical research and synthesis, such as combinatorial, multi-component, and 

aryne-mediated processes, as well as their combinations. The main focus of this thesis is the 

development of novel approaches towards medicinally-relevant heterocycles, such as 1,2-

dihydroisoquinolines, indoles, benzofurans, 1H-indazoles and pyridoindoles, employing 

metal-catalyzed and aryne-mediated multicomponent strategies.  

Chapter 2 is a review of recent advances in the development of multicomponent 

approaches to the synthesis of 5-membered ring fused aromatic heterocycles. It is meant to 

provide the reader with a general understanding of the importance of multicomponent 

synthetic strategies, as well as practical examples of their use in organic synthesis.  

Chapter 3 is a paper that was published in the journal ACS Combinatorial Science in 

2011.1 This chapter describes the synthesis of a 105-membered library of medicinally 

promising 1,2-dihydroisoquinolines by a three-component reaction and their further 

elaboration using Pd-catalyzed couplings. While working on the library synthesis, a novel 

three-component reaction of 2-alkynylbenzaldehydes, anilines, and indoles has been 

discovered. This project was initiated together with a former postdoctoral fellow in our 

group, Dr. Raffaella Mancuso, in collaboration with the Kansas University NIH Center for 

Excellence in Chemical Methodology and Library Development (KU-CMLD). Dr. Mancuso 
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contributed to the initial library design and preparation of some of the library members. 

Researchers from the KU-CMLD carried out computational studies, LCMS purification of a 

portion of the library members and purity analysis for all of the compounds. These 

compounds have been added to the NIH library of compounds to be tested for an array of 

biological activities. 

H

O

R1

N

R1NH2

+R2

R3

R4

O

N
R6

R3

R2

N

R5

R5
R6

N

R1

R3

R2

O

R4
R3 = I 

or
 R2 = Br

Further 
elaboration

via
 Pd chemistry

cat. AgOTf
L-proline

cat. AgOTf
L-proline  

Chapter 4 is an article that was published in the journal Tetrahedron in 2009.2 This 

chapter describes the scope and limitations of a methodology that allows the generation of 

2,3-disubstituted indoles under Sonogashira reaction conditions in a one-pot, three-

component fashion from readily available starting materials. A variety of medicinally-

relevant indoles has been obtained in good to excellent yields using microwave-assisted 

reaction conditions. This project was initiated by a former postdoctoral fellow in our research 

group, Dr. Yu Chen, who also carried out the synthesis and characterization of the N-methyl-

substituted indoles. 

NR2R3

I

R4

2% CuI, 3% PdCl2(PPh3)2
Et3N, MW, 60

οC, 20 - 30 min

NR2R3

R4

CH3CN, MW, 100
οC, 25 min

N
R4

R5

R1 R1R1
R5X

24 examples, 33 - 93%

R2
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Chapter 5 is a project soon to be published in the journal Tetrahedron. While working 

on the synthesis of indoles, we discovered that 2-iodophenols can participate in the same type 

of process, affording the corresponding 2,3-disubstituted benzofurans. This chapter describes 

the optimization process, scope, limitations and extensions of this one-pot, three-component 

methodology. Efforts in applying this method towards the total syntheses of the naturally-

occurring oligostilbenes Amurensin H, Gnetuhainin B, and Gnetuhainin F are described. 

OH

I

R2

2% CuI, 3% PdCl2(PPh3)2
Et3N/THF(3:1), MW, 25-60

οC, 30 min

OH

R2

CH3CN, MW, 100
οC, 25 min

O
R2

R3

R1
R1R1

R3X

29 examples, 12 - 100% 

Chapter 6 is a paper that was published in the journal Organic & Biomolecular 

Chemistry in 2012.3 This chapter describes the optimization process, scope and limitations of 

a methodology for the synthesis of N-alkylindazoles in a one-pot reaction of 1,1-

dialkylhydrazones and arynes through two complimentary routes employing either NCS-

chlorination or an Ac2O-trapping/deprotection/aromatization sequence. For the NCS 

protocol, we found that in the case of cyclic hydrazones the succinimide molecule is 

incorporated into the final compounds, resulting in a one-pot, three-component reaction.  

N
N

HR1
R2

R2

N
N

R1

R2

NAc
N

R1

R2

H
Ac2O

N
N

ClR1
R2

R2

NCS

N2H4

R1 = aryl, heteroaryl, alkenyl, alkyl
R2 = alkyl

21 examples, 29 - 91%

 

This project was carried out in collaboration with another group member, Anton 
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Dubrovskiy, who contributed by preparing the starting N,N-dialkylhydrazones, carrying out 

the optimization work on the process, and exploring the scope of the 

Ac2O/deprotection/aromatization strategy. 

Chapter 7 is a modification of a paper that was published in the Journal of Organic 

Chemistry in 2012.4 It describes a methodology for the synthesis of various 10-substituted 

pyrido[1,2-a]indoles by the reaction of readily prepared 2-substituted pyridines and arynes 

under mild reaction conditions. The optimization of the process and examination of the scope 

of the reaction of N-(1-(pyridin-2-yl)ethylidene)amines with arynes is described. A one-pot, 

three-component version of this reaction employing 2-pyridine aldehydes, primary amines, 

and arynes was found to be successful. The reaction of 2-(pyridin-2-ylmethylene)malonates 

with benzyne was independently discovered at roughly the same time by the former Larock 

group members Dr. Donald C. Rogness and Dr. Jesse P. Waldo. Dr. Rogness carried out the 

optimization work and studies on the scope of the synthesis of pyrido[1,2-a]indolemalonates, 

as well as their characterization. 

OTf

TMS N
CO2R4

CO2R4R1

17 examples
32 - 75% yield

R1

R2

N
X

N N
R3

F-
R2

R1

14 examples
22 - 80% yield

R2

R1

or

X = C(CO2R4)2 or NR3

 

Lastly, chapter 8 summarizes the contributions described in the previous chapters and 

discusses future directions one might see in the areas of metal-catalyzed and aryne-mediated 

multicomponent strategies. 



www.manaraa.com

 
 
 
 

5 

REFERENCES 

  
1. Markina, N. A.; Mancuso, R.;  Neuenswander, B.; Lushington, G. H.; Larock, R. C. 

ACS Comb. Sci. 2011, 13, 265-271. 

2.  Chen, Y.; Markina, N. A.; Larock, R. C. Tetrahedron 2009, 65, 8908-8915. 

3.  Markina, N. A.; Dubrovskiy, A. V.; Larock, R. C. Org. Biomol. Chem. 2012, 10, 2409-

2412. 

4.  Rogness, D. C.; Markina, N. A.; Waldo, J. P.; Larock, R. C. J. Org. Chem. 2012, 77, 

2743-2755. 



www.manaraa.com

!
!
!

6 

CHAPTER 2 

 

Multicomponent Approaches to the Synthesis of 5-Membered Fused  

Aromatic Heterocycles. A Review. 

 

2.1. INTRODUCTION 

With increasing awareness of the environmental situation on our planet and the urge to 

improve it, the need for greener synthetic strategies and principles is becoming more and 

more obvious for chemical industries, as well as academic laboratories. Over the last couple 

of decades, significant progress in this direction has been made, introducing a plethora of 

novel approaches, such as combinatorial chemistry,1 multicomponent processes,2 microwave-

3  and ultrasound-assisted reactions, 4  solid phase syntheses, 5  etc.  Among these, 

multicomponent processes (MCPs) have attracted the most attention due to their obvious 

synthetic utility and numerous advantages. Multicomponent processes include 

multicomponent reactions (MCRs), in which three or more different reactants are combined 

together in one reaction vessel to generate one major product. Another type of MCP is one-

pot multi-component reactions (OPMCRs) - a sequential addition of three or more reactants 

to the same reaction vessel to generate the major product without isolation of the 

intermediate products after each step. The advantages of MCPs are minimization of the 

amounts of reagents, solvents, catalyst loadings, as well as no need for isolation and 

purification of the intermediate compounds, which dramatically decreases the amounts of 
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chemical waste and time invested. In addition, due to the fact that the intermediates are not 

isolated, losses of the material due to isolation are minimized and usually higher yields of the 

final products are obtained compared to the overall yields for traditional step-by-step 

approaches. 

Since 1959, when Ugi reported the first four-component reaction, 6  interest in 

multicomponent reactions has grown immensely. The goal of this review is to give an 

overview of the developments in the applications of MCPs for the construction of 5-

membered fused aromatic heterocyclic cores (e.g. indole, benzofuran, benzothiophene, 

indolizine, indazole, benzimidazole, benzoxazole, benzothiazole, and their close analogues). 

Methodologies that afford other types of heterocycles or employ heterocyclic compounds as 

one of the components will not be covered due to space limitations. 

 

2.2. MCPs IN THE SYNTHESIS OF INDOLES 

Compounds containing an indole core have been studied extensively due to their high 

biological and pharmaceutical activity, as well as utility as building blocks in organic 

synthesis.7 Numerous methods to access the indole core have been developed, with a 

majority being multistep approaches. A number of MCPs for the synthesis of indoles have 

been successfully developed, providing a short and convenient route to these valuable 

structures.  
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2.2.1. Modifications of the Fischer indole synthesis 

Attempts to transform the Fischer indole synthesis into a multicomponent process led to 

the discovery of several useful processes. In 1999, Buchwald described a three-component 

procedure that utilizes Pd-catalyzed amination for the one-pot formation of hydrazones 1, 

which then can be cyclized in situ with enolizable ketones to form 2,3-disubstituted indoles 2 

(Scheme 1).8 Utilizing this method, the authors were also able to obtain N-aryl indoles when 

an additional equivalent of an aryl bromide was used in the first step.  

Scheme 1. Synthesis of indoles via Pd-catalyzed amination/Fisher cyclization 

 

A method based on the Rh-catalyzed hydroformylation of alkenes, followed by 

coupling of the resulting aldehydes with hydrazines for the formation of alkyl analogues of 3 

and subsequent Fischer cyclization to indoles 4, has been developed by Elibracht (Scheme 

2).9 More recently, a similar method for the synthesis of 2,3-disubstituted indoles has been 

described based on a tandem hydroformylation–Fischer indolization protocol.10  

Scheme 2.  Rh-catalyzed hydroformylation of alkenes/Fischer indole synthesis 
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In a related method described by Simoneau and Ganem, arylhydrazones 5 are formed in 

situ from nitriles or carboxylic acids, organolithium or Grignard reagents and arylhydrazines 

(Scheme 3).11 A number of pharmacologically useful 2,3-substituted indoles 6, including a 

series of triptamines and tryptamides, has been prepared in good yields. 

Scheme 3. Synthesis of indoles from nitriles, organometallic reagents and arylhydrazines 

 

An alternative method for the synthesis of tryptamines and tryptamine homologues 

involving a Fischer indole synthesis and the titanium-catalyzed hydroamination of alkynes 

has been reported by Beller and co-workers (Scheme 4).12 The Ti-catalyzed hydroamination 

of alkynes gives intermediate N-aryl-N-chloroalkylhydrazones 7, which are transformed into 

the desired indoles 8 by a [3,3]-sigmatropic rearrangement. Finally, the chlorine atom is 

replaced by ammonia, generated in the reaction mixture during the previous step. 

Scheme 4. Synthesis of tryptamines via Ti-catalzed hydroamination of alkynes 
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Very recently, one more three-component method for the formation of highly 

functionalized tryptamines has been reported, starting from acyl chlorides, 2-methyl-1-

pyrroline, and arylhydrazines. 13  The proposed reaction pathway involves pyridine- or 

DMAP-catalyzed N-acylation of the 1-pyrroline to form the intermediate 9, which co-exists 

in equilibrium with the enamine 10 (Scheme 5). Upon reaction of 9 or 10 with 

arylhydrazines, the Fisher indole precursor 13 is formed, which, upon heating under acidic 

conditions, provides the desired indoles 14 in good to excellent yields (66-99%).   

Scheme 5. Plausible reaction pathway for the synthesis of highly functionalized triptamines   

 

A similar pyridine-catalyzed, three-component coupling between acyl chlorides, 
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6).14  
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Scheme 6. Preparation of 2-(carboalkoxy)indoles via Fischer cyclization 

 

Related 5-(3-indolyl)oxazoles 19 have been synthesized starting with the Sonogashira 

coupling of acyl chlorides with substituted propargylic amides, followed by 

cycloisomerization of the ynones 17 obtained to the corresponding oxazoles 18. Subsequent 

coupling of 18 with arylhydrazines is followed by Fischer indole cyclization with the aid of 

microwave irradiation (Scheme 7).15 As a result, a small library of highly luminescent 

compounds 19 was obtained. 

Scheme 7. Synthesis of 5-(3-indolyl)oxazoles 
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aminoindoles 21 is favored through the intermediate 20. Addition of triflic phosphoramide 

was found to be critical to obtain high yields under mild reaction conditions. Although the in 

situ formation of the imine 20 is possible, the authors decided to focus on the 

precondensation of anilines and aldehydes in their studies of the scope of the process, and 

proceed then with the next step without purification of the imine, which greatly improved the 

yields of the desired products. 

Scheme 8. Three-component synthesis of 3-aminoindoles 

 

A combination of the Ugi and Heck reactions provides a novel route to indoles 

(Scheme 9).17 A two-step OPMCR of acrylic aldehydes, bromoanilines, formic acid and 

isocyanides affords the Ugi-Smiles adduct 22, which under Heck reaction conditions leads to 

the polysubstituted indoles 23, albeit in only 15-38% overall yields. 

Scheme 9. Ugi/Heck reaction for the synthesis of indoles 
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The Ugi-Smiles reaction in combination with a Heck cyclization has also been reported 

for the synthesis of indole scaffolds.18  2-Iodo-4-nitrophenol, allylamine, aldehydes and 

isocyanides are combined in an Ugi-Smiles coupling to afford the intermediate 24, which is 

converted in one-pot into the indoles 25 under Heck coupling conditions (Scheme 10). A 

one-pot reaction was possible if the residual isocyanide is neutralized prior to the addition of 

the palladium catalyst. 

Scheme 10. Ugi-Smiles/Heck strategy for the synthesis of indoles 
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has been reported by Cacchi in 1994 (Scheme 11).23 This methodology has been successfully 

applied to the synthesis of the NSAID pravadoline and later modified by other groups to 

provide a large variety of 2,3-disubstituted indoles and analogues.24 

Scheme 11. Pd-catalyzed reaction between 2-alkynylacetanilides, aryl iodides and CO 
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iodophenols, alkynes and aryl iodides.25 Over the course of this work, the authors found that 
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Scheme 12. One-pot synthesis of indole 27 from 2-iodo-5-methoxyacetanilide 
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This methodology has been later extended by the authors to its carbonylative version 

for the synthesis of tubulin polymerization inhibitors.26 Lu and co-workers reported a 

modification of this method for the synthesis of 2,3-disubstituted indoles 29. The use of o-

iodo-N-trifluoroacetanilides significantly expanded the reaction scope (Scheme 13).27  

Scheme 13. Synthesis of 2,3-disubstituted indoles from the o-iodo-N-trifluoroacetanilides 

 

The Larock group recently developed a microwave-assisted modification of this 

reaction, which allows the efficient synthesis of multisubstituted indoles and N-
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treatment of the reaction mixture with potassium carbonate in aqueous MeOH, and then 

coupling with o-iodoanilides (Scheme 14).29 The reaction sequence includes 2 consecutive 

Sonogashira couplings and Pd-catalyzed cyclization of intermediate 2-alkynylanilines to 

form the corresponding indoles 30. 
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Scheme 14. Indoles from (trimethylsilyl)acetylene, iodoarenes and o-iodoanilines 

 

A multicomponent cascade process, based on the sequential nucleophilic attack of in 

situ preformed imines, followed by a palladium-catalyzed oxidative heterocyclization-

alkoxycarbonylation process, leads to 1-(alkoxyarylmethyl)indole-3-carboxylic esters 32, as 

has been reported by Gabriele in 2010 (Scheme 15).30 Imines 31 are formed in situ from the 

reaction of 2-alkynylanilines and aldehydes and a further reaction with CO and O2 in ROH-

HC(OR)3 as a solvent in the presence of catalytic amounts of PdI2 to afford a wide variety of 

indoles 32 in 40-73% yields. 

Scheme 15. Pd-catalyzed synthesis of 1-(alkoxyarylmethyl)indole-3-carboxylic esters 
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Scheme 16. Synthesis of 2-aryl-3-(methylamino)indoles 

 

The same year, Yamamoto reported a Pd-catalyzed multicomponent process for the 

synthesis of N-cyanoindoles from isocyanides, allyl carbonates, and trimethylsilyl azide 

(Scheme 17).32 The authors proposed that this transformation most likely proceeds through 

the intermediate 34, which upon losing N2 and cyclizing, affords 1-cyano-3-allylindoles 35 in 

30-77% yields. 

Scheme 17.  Pd-catalyzed multicomponent reaction for the synthesis of N-cyanoindoles 
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Scheme 18.  Pd-catalyzed multicomponent reaction for the synthesis of 2-aroylindoles 

 

2-(2-Haloalkenyl)aryl halides have been shown to participate in sequential amination 

reactions to provide 1-substituted indoles 37 under Pd catalysis (Scheme 19).35 

Scheme 19. Sequential amination reactions for the synthesis of 1-substituted indoles 
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Scheme 20. Three-component synthesis of 2-(methylamino)indoles 

 

Copper was found to be a suitable catalyst for the formation of indole-fused benzo-1,4-

diazepines 40 by a Mannich-type process starting from 2-alkynylanilines, formaldehyde, and 

amines (Scheme 21).37 This domino three-component coupling-indole formation-N-arylation 

sequence proceeds through the formation of alkynylamines, which under CuI-catalyzed 

conditions provide indole intermediates 39, which after deprotection and additional N-C bond 

formation result in the formation of benzo-1,4-diazepines 40 in 23-85% yields. Various 

modifications of this method were later reported to afford a wide array of indole analogues.38 

Scheme 21. Formation of 2-methylaminoindoles via modified Mannich reaction 
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cyclization to the desired indolines 41. The indolines 41 were synthesized in good to 

excellent yields. Alternatively these scaffolds can be isomerized in situ into the indoles 42 

(Scheme 22). 

Scheme 22. Cu(I)-catalyzed MCR for the synthesis of 3-aminoindoles 

 

A Pd/Cu-catalyzed process that employs ortho-dihaloarenes together with primary 

amines and bromoalkenes was developed in 2007 by Barluenga and co-workers (Scheme 

23). 41  The imine intermediate 43 is formed after the Pd-catalyzed coupling of the 

bromoalkene and the amine and subsequent C-H activation and coupling with 

dibromobenzenes. This intermediate then undergoes C-N coupling to afford the 1,2-

disubstituted indole derivatives 44 in 57-77% yields. An alternative process employing 

terminal alkynes, instead of bromoalkenes, also proved to be successful.42  

Scheme 23. Synthesis of indoles from ortho-dihaloarenes 
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indolization (Scheme 24).43 Various indoles and N-acylindoles were obtained following this 

method in good to excellent yields. The authors note that annulation of the aromatic ureas 45 

had not been reported previously. The fact that intermediate 2-iodoindoles are not isolated is 

important, since the number of available 2-iodoanilines is limited. 

Scheme 24. Curtius rearrangement/Pd-catalyzed indolization of 2-iodoarenecarboxylic acids 

 

2.2.4. Other MCPs for the synthesis of indoles 

Del Ponte and co-workers reported a rhodium-catalyzed domino hydroformylation/ 

indolization of m-substituted-o-nitrocinnamaldehyde diethyl acetals for the synthesis of 3-

substituted indoles 48 (Scheme 25).44 The process most likely proceeds through the aniline 

intermediate 47 with attack of its amino group onto the aldehyde and subsequent 

aromatization to afford indoles 48. Unfortunately, no studies of the scope of this process have 

been carried out.  

Scheme 25. Rhodium-catalyzed domino hydroformylation/indolization 
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reaction has been reported.45 This fast, neat, microwave-assisted, Lewis acid-catalyzed, one-

pot reaction efficiently produces various benzo[g]indoles 49 from aminoketones, 

naphthoquinones and urea as an environmentally friendly source of ammonia (Scheme 26). 

Scheme 26. Synthesis of 5-hydroxybenzo[g]indoles 

 

Recently, a multicomponent domino reaction that employs an intermolecular allylic 

esterification and indole formation has been described.46 In this process, the formation of the 

dihydroindole core 51 through intermediate 50 and its subsequent dimerization provides the 

desired indoles 53 in moderate 40-54% yields (Scheme 27). 

Scheme 27. Multicomponent domino reaction for the synthesis of indoles 53 
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has been reported (Scheme 28).47 A small library of 7-azaindoles 54 has been prepared 

following the described methodology. 

Scheme 28. One-pot, three-component synthesis of 7-azaindoles 
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55 were obtained in good yields, although the scope of the process was rather limited. Later, 

this method was employed in the synthesis of XH-14 and its analogues, 50 and a modified 

catalytic system (PdI2/thiourea/CBr4) was reported, which significantly increased yields and 

expanded the scope of the initial process.51 A related method was developed for the 

generation of benzo[b]furan-3-carboxylic acids.52   

Scheme 29. Three-component carbonylative cyclization of 2-alkynylphenols 

 

An analogous process reported in 1996 by Cacchi involves the Pd-catalyzed cyclization 

of 2-alkynylphenols in the presence of vinylic triflates and CO (Scheme 30).53 In this case, 

the benzofurans 56 are obtained in 20-64% yields. Fathi and co-workers later successfully 

extended this process to the use of aryl iodides and prepared a number of highly substituted 

benzofurans.54 

Scheme 30. Pd-catalyzed cyclization of 2-alkynylphenols with vinylic triflates and CO  
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the use of CO as an one of the components. In 2001, Flynn reported the first three-component 

synthesis of benzo[b]furans starting from iodophenols, alkynes and aryl iodides (Scheme 

31).25 In this Pd-catalyzed process, the first Sonogashira coupling was found to be inefficient 

when 2-iodophenols were employed. The authors turned to the use of MeMgCl as a reagent 

to mask the phenol group, which allowed a more efficient Sonogashira reaction to take place. 

The authors propose that after the intermediate 57 is formed, attack of the oxygen onto the 

triple bond in the second step of this OPMCR is promoted by the “R3PdX” species formed in 

situ after the addition of R3X to the reaction mixture. Despite the reactive nature of the 

MeMgCl reagent, a number of functional groups are tolerated under these reaction conditions 

and the process affords the highly substituted benzofurans 58 in good to excellent yields (45-

88%). Examples of the coupling in the presence of CO results in the formation of the 

corresponding carbonylative coupling products. 

Scheme 31. Three-component synthesis of benzofurans 

 

The authors later applied this method for the one-pot, three-component synthesis of (±)-

Frondosin B.55 The OPMCR between 2-bromo-4-methoxy-phenol, 3-methylbutenyne and 

vinylic bromide 59 was successful, affording the non-cyclized product 60 as a major product 

in a 48% yield, along with 11% of the ring-expanded product 61 (Scheme 32). The authors 

propose that the product 61 is likely formed from compound 60 by a 1,7-hydrogen shift. This 
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ring-expanded analogue 61 could be obtained as a sole product in a 61% yield if the 

cyclization step is carried out at 100 oC for 48 h. The product 60 was then successfully 

converted to (±)-Frondosin B in 3 additional steps.  

Scheme 32. One-pot synthesis of a ring-expanded analogue of (±)-Frondosin B 

 

The Larock group developed a similar microwave-assisted one-pot method that does 

not require the use of the harsh MeMgCl reagent and allows one to obtain benzo[b]furans in 

excellent yields in a one-pot process under milder reaction conditions.56 Also, a similar 

palladium-mediated, three-component process for the synthesis of furo[2,3-b]pyridones 

starting from 3-iodopyridones have been reported by the Balme group.57 

The same OPMCR developed for the formation of indoles 38 has been successfully 

applied to the synthesis of 2-(methylamino)benzo[b]furans (Scheme 20).36 

2.3.2. MCPs for the synthesis of benzofurans from phenols or 2-hydroxybenzaldehydes 

An MCR analogous to the one developed for the synthesis of indoles 42,40 has been 

reported for the synthesis of 2-(alkylamino)substituted benzo[b]furans (Scheme 33). 58 

Various alkynes and amines were well tolerated under the optimized reaction conditions and 

afforded the benzo[b]furans 62 in 22-99% yields. 

OH

BrMeO
+

1. 2.1 equiv MeMgCl, THF, 0 oC
2. cat. PdCl2(PPh3)2, 65 oC, 24 h

3.                    , DMSO, 80 oC, 9 h
                                  100 oC, 48 h

O

Br

O

O

MeO

O

MeO

O

+

60, 48% 61, 11%
61%

(±)-Frondosin B

59



www.manaraa.com

!
!
!

27 

Scheme 33. Three-component synthesis of 3-aminobenzofurans 

 

In this three-component coupling of an alkynylsilane, o-hydroxybenzaldehydes and 

secondary amines, the best results were obtained when the CuCl/Cu(OTf)2 catalytic system 

was employed. The authors propose that CuCl is required for transforming the TMS-alkyne 

into the corresponding copper acetylide. The Cu(OTf)2 is responsible for: a) being a Lewis 

acid to facilitate formation of the iminium intermediate 64, and b) activating the alkyne 

moiety to help with nucleophilic attack by the OH group in the intermediate 65 by a 5-exo-

dig cyclization to produce compound 66, which after losing Cu(OTf)2, deprotonation and 

aromatization affords the desired 3-aminobenzo[b]furans 62 (Scheme 34).  

Analogous processes where terminal acetylenes 59  or isocyanides 60  are employed, 

instead of the silyl acetylenes, have been reported by other groups. In the case of isocyanides, 

2,3-diaminobenzo[b]furans are obtained. 
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Scheme 34. Proposed reaction mechanism 

 

Recently, a novel method has been reported for the synthesis of 2-amino-3-

arylbenzo[b]furans starting from the phenol 67, aldehydes and alkyl isocyanides (Scheme 

35).61 The reaction proceeds in DMF under reflux conditions and affords a variety of 

products 70 in excellent (90-95%) yields. The authors propose that the reaction between 

phenol and aldehyde most likely produces the oxoquinodimethane intermediate 68, which 

can then add to the isocyanide molecule to form the [4+1] cycloaddition adduct 69. A [1,3]-

hydrogen shift in compound 69 results in the formation of the product 70. 1-Naphthol was 

also shown to undergo an analogous transformation and afford naphtho[1,2-b]furan-2-amines 

in excellent 90-95% yields. A similar process was reported by Mosslemin et al for the 

synthesis of annulated furan heterocycles.62 
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Scheme 35. Three-component reaction between phenols, aldehydes and isocyanides 

 

Very recently an analogous method for the synthesis of acenaphtho[1,2-b]furan 

derivatives has been reported by Damavandi and co-workers.63 

2.3.3. MCPs for the synthesis of benzofuran analogues 

A three-component synthesis of furo[2,3-c]quinolones from 2-alkynylanilines, 

aldehydes, and isocyanoacetamides has been reported (Scheme 36).64 Although no detailed 

mechanistic study has been carried out, the authors propose that this transformation proceeds 

through the oxazole intermediate 71, which, followed by intramolecular cycloaddition to the 

triple bond, forms the oxa-bridged intermediate 72. The latter, by a retro-Diels-Alder loss of 

the nitrile unit and in situ oxidation by atmospheric oxygen, furnishes the furo[2,3-

c]quinolones 73 in moderate to good (42-75%) yields. 
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Scheme 36. A three-component synthesis of furo[2,3-c]quinolines 

 

Very recently, an isocyanide-based multicomponent reaction in combination with an 

intramolecular Ullmann reaction for the synthesis of furo[2,3-b]indoles has been described.65 

The Cu-catalyzed reaction of 1,3-dicarbonyl compounds, 2-halobenzaldehydes and 

isocyanides afforded products 74 in 49-90% yields (Scheme 37). 

Scheme 37. Multicomponent reaction for the synthesis of furo[2,3-b]indoles 

 

 

2.4. MCPs IN THE SYNTHESIS OF BENZOTHIOPHENES 

Benzothiophenes and benzoselenophenes are compounds of interest to synthetic 

chemists due to their wide variety of useful applications.66 Though a variety of methods have 
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been discovered for the synthesis of these compounds, there is only one reported example of 

MCP for their synthesis. 

In 2007, an OPMCR for the synthesis of 2-aminobenzo[b]thiophenes was reported by 

Neckers and co-workers.67 The authors discovered that the reaction between 1-(2-chloro-5-

nitrophenyl)ethanone and secondary amines in the presence of elemental sulfur and NaOAc 

gives 2-aminobenzothiophenes 75, albeit in only low to moderate (4-46%) yields (Scheme 

38).  

Scheme 38. One-pot three-component synthesis of 2-aminobenzo[b]thiophenes 

 

 

2.5. MCPs IN THE SINTHESIS OF INDAZOLES 

1H- and 2H-Indazoles are important classes of compounds whose derivatives are 

widely used in the pharmaceutical industry.68 There has been a lot of interest in the synthesis 

of these structures in the last few decades. Numerous synthetic pathways for the synthesis of 

1H-indazoles have been developed, whereas methods for the synthesis of 2H-analogues are 

still relatively underexplored. Several MCPs for the synthesis of indazoles and analogues 

have been reported recently. 

In 2011, a copper-catalyzed, one-pot, three-component synthesis of 2H-indazoles was 

reported (Scheme 39).69 2-Bromobenzaldehydes are reacted with primary amines and NaN3 
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to afford good to excellent yields of a variety of 2H-indazoles 76.  

Scheme 39. Three-component synthesis of 2H-indazoles 

 

Very recently, another one-pot method for the synthesis of 2H-indazoles has been 

reported (Scheme 40).70 This process is based on a four-component Ugi reaction of 2-

nitrobenzaldehydes, amines, and isocyanides in the presence of TMSN3. The preformed Ugi 

intermediates 77 are transformed into the 2H-indazoles 78 by heating with triethylphosphite 

in DMF. In most cases, moderate to good (24-65%) yields of indazoles 78 were obtained. 

Scheme 40. Four-component synthesis of 2H-indazoles 

 

 

2.6. MCPs IN THE SYNTHESIS OF INDOLIZINES AND ANALOGUES 

 Indolizines, pyridoindoles, and their partially hydrogenated analogues are known for 

their pharmaceutical and biological activity. Although a lot of methods have been developed 

for their synthesis, many of them are either harsh or require multiple steps.71 Recently, 

several multicomponent approaches have been reported that significantly improve the already 

existing methods and allow quick and easy generation of these valuable cores. 
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In 2005, an MCR for the synthesis of indolizines was reported (Scheme 41).72 This 

method allows great possibilities for variation of the substituents in all three of the starting 

materials. The variously substituted indolizines 79 were obtained in 10-73% yields.  

Scheme 41. Three-component synthesis of indolizines 

 

The authors demonstrated that other heterocyclic moieties can be used in place of the 

starting pyridines, leading to a great variety of mixed heterocyclic compounds (Scheme 42). 

Scheme 42. Selected examples of the other heterocycles obtained 

 

A convenient three-component reaction for the synthesis of indolizines and their 

annulated versions, pyridoindoles, has been reported by Zou and co-workers (Scheme 43).73  

The indolizines 80 were obtained in moderate to excellent (42-97%) yields by the reaction of 

pyrrole-2-carboxaldehyde with alkyl bromides and alkenes. Using an indole-2-

carboxaldehyde afforded the pyrido[1,2-a]indoles 81 in moderate (40-58%) yields. 
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Scheme 43. MCR for the synthesis of indolizines and pyridoindoles 

 

An interesting MCR for the synthesis of pyrido[2,1-a]isoindoles involving aryne 

annulation has been independently reported by Huang and Zhang (Scheme 44).74 In this 

process, a pyridinium salt, formed from the reaction of pyridine with α-bromoketones, most 

likely generates the azomethine ylide 82 by the elimination of HBr. A [3 + 2] cycloaddition 

of the ylide 82 with the aryne, followed by aromatization, affords the desired products 83. 

Scheme 44. MCR for the synthesis of pyrido[2,1-a]isoindoles 

 

2.7. MCPs IN THE SYNTHESIS OF BENZIMIDAZOLES 

Benzimidazole and its derivatives play a crucial role in the pharmaceutical industry and 

have a wide range of applications in material science.75 Numerous processes for their 

synthesis have been developed. However, multicomponent approaches to this valuable core 

are still very limited. 

Tempest and Hulme reported a synthesis of benzimidazoles by a four-component Ugi 
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coupling.76 Although this transformation was technically carried out in two steps, the 

isolation of the intermediate Ugi product after Boc-group cleavage was minimized and the 

product 84 was used crude in the cyclization step to afford a variety of benzimidazoles 85 

(Scheme 45). 

Scheme 45. Synthesis of benzimidazoles by a four-component Ugi coupling 

 

In 2010, Wang and co-workers reported a copper-catalyzed, three-component cascade 

reaction between sulfonyl azides, terminal alkynes and 2-bromoanilines for the synthesis of 

1,2-disubstituted benzimidazoles 86 (Scheme 46).77  

Scheme 46. Synthesis of 1,2-disubstituted benzimidazoles 86 

 

The authors propose that this transformation is most likely occurring through the 

ketamine intermediate 87, formed from the reaction of an alkyne and a sulfonyl azide 

(Scheme 47). Intermediate 87 is then reacted with aniline to produce the N-sulfonylamide 88, 

which is in equilibrium with its tautomer 89. The Cu-catalyzed intramolecular C-N coupling 

of 89 affords the benzimidazoles 86. 
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Scheme 47. Proposed reaction mechanism 

 

In 2011, Lee and co-workers reported a three-component approach for the synthesis of 

benzimidazoles from 2-haloanilines, aldehydes, and NaN3 under Cu(I)-catalyzed conditions 

(Scheme 48).78 A total of 28 benzimidazoles 90 were prepared through this method in good 

to excellent yields. The authors also showed that the fungicide and parasiticide tiabendazole 

(91) (trade names Mintezol and Tesaderm) could be accessed through this method in a 97% 

yield starting from 2-iodoaniline. 

Scheme 48. MCR for the synthesis of benzimidazoles 
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49).79 After the Ugi-Smiles intermediate 92 is obtained, the reaction mixture is filtered and 

dried and then subjected to a second step to afford the desired benzimidazoles 93 in 23-83% 

yields. When aromatic aldehydes were employed, mixtures of isomers were obtained due to 

the formation of two competing benzylic positions in the corresponding intermediates 92. 

Scheme 49. Phosphite-mediated synthesis of benzimidazoles 

 

The synthesis of a pyrido[1,2-a]benzimidazole by a novel multicomponent reaction of 

chloroacetonitrile, malononitrile, an aromatic aldehyde, and pyridine has been reported by 

Yan and co-workers (Scheme 50).80 In this process, 6 molecules are combined in a one-pot 

process to create 21 examples of multifunctional pyrido[1,2-a]benzimidazoles 94 in 20-51% 

yields. In some cases, small amounts of polysubstituted benzenes or 2-amino-3-cyanoindoles 

were obtained as side products. 

Scheme 50. MCR for the synthesis of pyrido[1,2-a]benzimidazoles 
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A novel methodology for the synthesis of 1H-phenanthro[9,10-d]imidazoles under 

ultrasonic irradiation has been reported.81 9,10-Phenanthrenequinone, an aromatic aldehyde, 

and ammonium acetate were reacted in the presence of catalytic amounts of 95 and afforded 

the phenanthro[9,10-d]imidazoles 96 in good to excellent (78-93%) yields (Scheme 51). 

Scheme 51. Synthesis of 2-aryl-1H-phenanthro[9,10-d]imidazoles 

 

 

2.8. MCPs IN THE SYNTHESIS OF BENZOXAZOLES AND BENZISOXAZOLES  

Benzoxazoles and isomeric benzisoxazoles represent pharmaceutically valuable 

compounds and approaches to their synthesis have been studied extensively.82 While a few 

MCPs have been developed for the synthesis of benzoxazoles, no reports of MCPs for the 

synthesis of benzisoxazoles have been described in the literature. 

A novel Pd-catalyzed multicomponent process has been developed for the synthesis of 

benzoxazoles and their non-fused analogues, oxazolines (Scheme 52).83 Starting from 2-

aminophenols, tert-butylisocyanide, and various aryl halides, the authors were able to obtain 

the benzoxazoles 97 in excellent (92-99%) yields. Oxazolines were obtained when 2-

aminoethan-1-ol was used, instead of 2-aminophenols. 
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Scheme 52. Pd-catalyzed multicomponent process for the synthesis of benzoxazoles 

 

 

2.9. MCPs IN THE SYNTHESIS OF BENZOTHIAZOLES 

 Benzothiazoles represent another class of compounds that play an important role as 

biologically and synthetically important scaffolds. To the best of our knowledge, only two 

examples of MCPs to access these compounds have been reported recently.  

A Cu-catalyzed, cascade, three-component reaction for the synthesis of 2-N-

substituted benzothiazoles from 2-haloanilines, carbon disulfide, and amines has been 

reported (Scheme 53).84 Various amines were found to be efficient in this process, including 

primary, secondary aliphatic and aromatic amines, cyclic secondary amines, and aromatic N-

containing heterocycles, such as pyrrole, indole, and imidazole. A small library of 49 unique 

compounds 98 has been generated employing this methodology.  

Scheme 53. Three-component reaction for the synthesis of 2-N-substituted benzothiazoles 
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Very recently, a Cu-catalyzed OPMCR for the synthesis of benzothiazoles from 2-

iodoanilines, aldehydes, and sodium hydrosulfide as a sulfur source has been reported 

(Scheme 54).85 A small library of 39 benzothiazoles 99 has been synthesized in 61-99% 

yields. The authors note that NaSH·nH2O functions both as a sulfur surrogate and as an 

oxidant in this transformation. 

Scheme 54. Cu-catalyzed OPMCR for the synthesis of benzothiazoles 

 

 

2.10. CONCLUSIONS 

As can be seen from the methods described above, MCPs are becoming a convenient 

and efficient tool for easy access to 5-membered fused aromatic heterocycles. The obvious 

advantages of these one-pot methods motivate scientists to continue their work in this 

direction so that more methods can be developed. However, considering the demands of 

today’s pharmaceutical industry, the field of multicomponent reactions is still under-

exploited and more efficient MCPs for the synthesis of new heterocycles of pharmaceutical 

interest are waiting to be discovered. 
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CHAPTER 3 

 

Solution-Phase Parallel Synthesis of a Diverse Library of 1,2-Dihydroisoquinolines 

 

Reproduced from ACS Combinatorial Science 2011, 13, 265-271, with permission from the 
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3.1. ABSTRACT 

Synthesis of a 105 membered library of 1,2-dihydroisoquinolines is described. The 

1,2-dihydroisoquinoline compounds have been prepared in good yields using a Lewis acid 

and organocatalyst-cocatalyzed multicomponent reaction of 2-(1-alkynyl)benzaldehydes, 

amines and ketones. Various indoles have also been employed as pronucleophiles, furnishing 

1-(3-indolyl)-1,2-dihydroisoquinolines. The halogen functionality present in some of the 

synthesized compounds allows for further diversification by palladium-catalyzed Suzuki-

Miyaura and Sonogashira cross-couplings to give more diversified 1,2-dihydroisoquinoline 

derivatives.  
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3.2. INTRODUCTION 

Structures containing a 1,2-dihydroisoquinoline fragment are valuable intermediates 

for the synthesis of biologically active compounds, e.g. alkaloids and pharmuticals.1 For 

example, cribrostatin 4 and toneberbine IK-2 have been shown to possess cytotoxicity 

against some human cancer cells (Figure 1).2,3 The hydrochloride salt of the 

tetrahydroisoquinoline quinapril (sold under the brand name Accupril) is used for the 

treatment of congestive heart failure and hypertension4. 

 

Figure 1. Examples of biologically active 1,2-dihydro- and tetrahydroisoquinolines 

Among the numerous methods developed for synthesis of the 1,2-dihydroisoquinoline 

core, the most common strategies include functionalization of preformed isoquinoline units 

using various nucleophiles5 or ring-forming reactions of 2-(1-alkynyl)arenecarboxaldehyde 

imines through transition metal-catalyzed processes.6 The latter processes have also been 

extended to one-pot procedures that employ 2-(1-alkynyl)arenecarboxaldehydes and amines 
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to preform the required imines in situ.7  

The solution-phase parallel synthesis of libraries of low molecular weight compounds 

is increasingly important in modern medicinal chemistry.8 This approach facilitates the high 

throughput screening of larger and more diverse sets of compounds with less time spent on 

optimization of the reaction conditions. In continuation of our work in adapting proven 

methods for the synthesis of heterocycles to a high throughput synthesis format,9 we herein 

report the solution phase synthesis of a library of 1,2-dihydroisoquinolines.  

In order to synthesize a library with greater chances for biological activity, the multi-

substituted 1,2-dihydroisoquinoline template 1 has been evaluated computationally for its 

drug-like properties on the basis of Lipinski’s “rule of five”10 (Scheme 1). 

Calculations have been performed based on the commercial availability of aldehydes 

4 (Scheme 2), terminal alkynes 5 and 10, ketones 6, anilines 7, indoles 9 and boronic acids 

11 (Figures 2 and 4). This data has been used to populate a virtual library of all theoretically 

possible products, giving 24,888 [(8 x 2 x 6 x 40) + (8 x 50 x 6 x 3) + (8 x 50 x 6) + (8 x 53 x 

9 x 3)] unique potential compounds. A small subset of this virtual library, namely 239 

compounds, was shown to follow Lipinski’s rules with ≤1 violation. The library synthesis of 

1,2-dihydroisoquinolines described herein was primarily focused on the preparation of 

compounds that fall within these 239 examples. 

 

3.3. RESULTS AND DISCUSSION 

3.3.1. Library construction 

To study a wide variety of multisubstituted 1,2-dihydroisoquinolines, we developed 
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the strategy described in Scheme 1. The 1,2-Dihydroisoquinolines 1 can be prepared directly 

from the corresponding 2-(1-alkynyl)benzaldehydes 3 through reaction with anilines 7 and 

either ketones 6 or indoles 9. More highly substituted 1,2-dihydroisoquinolines can be 

prepared via palladium-catalyzed couplings of the corresponding halogen-containing 1,2-

dihydroisoquinolines 2, prepared through the same three-component coupling reaction.  

Scheme 1. Library outline and preparation of 2-(1-alkynyl)benzaldehydes 3 
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The 2-(1-Alkynyl)benzaldehydes 3 are easily prepared by palladium/copper-catalyzed 

Sonogashira coupling11 of the corresponding o-bromobenzaldehydes 4 (1.0 equiv of 4, 1.05 

equiv of terminal alkyne 5, 2 mol % of PdCl2(PPh3)2, 2 mol % of CuI, and Et3N at 50 °C for 

6 h) (Scheme 1). The yields of this process range from 65% to 100% and this procedure 

readily accommodates various functional groups (Table 1). 
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Table 1. Data for Compounds 3{1-15} 

compound 3 R1 R2 R3 X yield (%)a 

3{1} 4-(MeO)C6H4 H H Br 99 

3{2} 3,5-(MeO)2C6H3 H H Br 96 

3{3} 3,5-(MeO)2C6H3 H MeO Br 85 

3{4} 3,5-(MeO)2C6H3 H Br I 68b 

3{5} 3-(MeO)C6H4 H H Br 78 

3{6} 3-(MeO)C6H4 H F Br 100 

3{7} 4-(O2N)C6H4 H H Br 65c 

3{8} 3-thiophenyl H H Br 68 

3{9} 3-thiophenyl H MeO Br 87 

3{10} 3-thiophenyl H F Br 89 

3{11} 3-thiophenyl  Br 90 

3{12} 3-MeC6H4 H H Br 81 

3{13} phenyl H NO2 Cl 89 

3{14} 4-(MeO)C6H4 H Br I 56 

3{15} Phenyl H F Br 84 

aIsolated yields after column chromatography. All compounds 3 were characterized by 1H NMR spectroscopy. 

Those not described in the literature were additionally characterized by 13C NMR and HRMS; bprepared from 

the corresponding methyl benzoate (1. LAH; 2. PCC); cthis reaction used different reaction conditions: 3% 

PdCl2(PPh3)2, 2% CuI, iPr2NH (4 equiv), DMF, 70 �C, 2 h. 

 

3.3.2. Preparation of the building blocks 

 For the synthesis of the 1,2-dihydroisoquinoline core, we utilized the procedure 

described by Ding et al.7a (Scheme 2, eq. 1). The advantages of this three-component AgOTf 

and L-proline cocatalyzed process include the commercially availability of ketones 6 and 

amines 7, three independent points of diversification and formation of the desired products in 
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one step. 

Scheme 2. Synthesis of 1,2-dihydroisoquinolines and 1-(3-indolyl)-1,2-dihydroisoquinolines 
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Additionally, we are able to replace ketones with indoles in this process, which 

allows one to isolate 1-(3-indolyl)-1,2-dihydroisoquinolines in a single one-pot process 

(Scheme, eq. 2). Since initiation of this work, Yamamoto and Wu have independently 

reported the use of indoles in the same type of process under slightly modified reaction 

conditions.12 By employing the reaction conditions optimized for ketones using a sublibrary 

of indoles 9, we have been able to isolate 1-(3-indolyl)-1,2-dihydroisoquinolines in moderate 

to good yields in most cases, broadening the scope of the previously reported 1,2-

dihydroisoquinoline synthesis. 

The sublibraries of ketones, anilines and indoles used for the synthesis of 1,2-

dihydroisoquinolines 8 are presented in Figure 2. 
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Figure 2. Ketone 6{1-5}, aniline 7{1–4} and indole 9{1–6} sublibraries  

The data for the 1,2-dihydroisoquinolines 8{1-30} prepared, but not subjected to 

further diversification, is shown in Table 2. 

Table 2. Library Data for Compounds 8{1-30} 

product 3 6 or 9 7 yield (%)a purity (%)c 

8{1} 3{1} 6{4} 7{1} 33 96 

8{2} 3{1} 9{1} 7{1} 69 98 

8{3} 3{2} 6{1} 7{1} 43 99 

8{4} 3{2} 9{4} 7{1} 9 88 

8{5} 3{3} 6{5} 7{2} 15 100 

8{6} 3{5} 9{1} 7{2} 76 95 

8{7} 3{6} 9{3} 7{2} 29 100 
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Table 2 continued. 

8{8} 3{7} 6{3} 7{1} 0 - 

8{9} 3{7} 9{5} 7{2} 0 - 

8{10} 3{8} 6{1} 7{1} 56 96 

8{11} 3{8} 6{1} 7{3} 56 99 

8{12} 3{8} 6{2} 7{1} 56 93 

8{13} 3{8} 6{4} 7{1} 72 42 

8{14} 3{11} 6{5} 7{2} 15b 100 

8{15} 3{11} 9{1} 7{1} 24 100 

8{16} 3{12} 6{1} 7{1} 56 96 

8{17} 3{12} 6{1} 7{3} 66 98 

8{18} 3{12} 6{2} 7{1} 72 100 

8{19} 3{12} 6{4} 7{1} 60 94 

8{20} 3{12} 9{2} 7{1} 63 98 

8{21} 3{12} 9{1} 7{1} 72 98 

8{22} 3{13} 6{2} 7{1} 77 82 

8{23} 3{14} 6{1} 7{1} 59 97 

8{24} 3{14} 6{1} 7{3} 98 98 

8{25} 3{14} 6{2} 7{1} 77 100 

8{26} 3{14} 6{4} 7{1} 44 31 

8{27} 3{15} 6{1} 7{1} 78 95 

8{28} 3{15} 6{1} 7{3} 98 100 

8{29} 3{15} 6{2} 7{1} 74 100 

8{30} 3{15} 6{4} 7{1} 53 13 
  a Isolated yield after column chromatography. b Isolated yield after preparative HPLC.  c UV purity determined       

at 214 nm after preparative HPLC. 

1,2-Dihydroisoquinolines 8{31-51}, containing halogen atoms that can be further 

subjected to palladium-catalyzed couplings, have been isolated and purified by column 
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chromatography. All of the 1,2-dihydroisoquinolines 8{31-51}, except 8{39} and 8{45}, 

which were used crude in the next step, were fully characterized using HRMS, as well as 1H 

and 13C NMR spectroscopy (see the Supporting Information for the experimental details). In 

most cases, moderate to good yields of the 1,2-dihydroisoquinolines 8{31-51} have been 

obtained. The results are summarized in Figure 3. 

As can be seen from both Table 2 and Figure 3, this process is generally functional group 

tolerant and allows one to obtain diversely-substituted 1,2-dihydroisoquinolines in 9-98% 

yields. The major limitation of this procedure is that it does not tolerate strong electron-

withdrawing groups in the alkyne portion of the 2-(1-alkynyl)benzaldehydes 3. For example, 

in the reactions of compound 3{7}, bearing a nitro group, compounds 8{8} and 8{9} were 

not detected in the crude reaction mixtures, and compound 8{39} was obtained in only an 

11% yield. By employing indoles 9 instead of ketones 6 in this process, good yields from the 

unsubstituted indole 9{1} have been obtained. This process exhibits good tolerance of 

various functional groups in positions 1 and 5 of the indole; thus, compounds 8{20}, 8{50} 

and 8{51} were obtained in 63, 46 and 75% yields, respectively. The presence of functional 

groups in position 2 of the indole significantly lowered the yields of the corresponding 

products; thus, compounds 8{4} and 8{7} were obtained in only 9 and 29% yields, 

respectively. 

2.3.3. Diversification 

Finally, the 1,2-dihydroisoquinolines 8{31-51} can be further elaborated using well 

known palladium-mediated processes, such as Suzuki-Miyaura13 and Sonogashira11 

couplings (Scheme 3). 
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Figure 3. Halogen-containing 1,2-dihydroisoquinolines 8{31–51} 
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Scheme 3. Diversification of 1,2-dihydroisoquinolines 8{31-51}a 
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a Method A (Sonogashira coupling): 3 mol % PdCl2(PPh3)2, 3 mol % CuI, Et3N, alkyne 10 (1.2 equiv), 60 °C, 40 

min under microwave irradiation. Method B (Suzuki-Miyaura coupling): 5 mol % Pd(PPh3)4, 1M Cs2CO3 (2 

equiv), boronic acid 11 (1.2 equiv), 1:1 EtOH/DMF, 120 °C, 20 min under microwave irradiation. 

Sonogashira coupling of the 1,2-dihydroisoquinolines 8{31-51} with various terminal 

alkynes 10 nicely provides the corresponding alkyne products 12a{1-22} using Et3N as the 

solvent under microwave irradiation for 40 min at 60 °C (Scheme 3). The Suzuki-Miyaura 

coupling of the 1,2-dihydroisoquinolines 8{31–51} with various arylboronic acids 11 
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proceeded smoothly to give the desired products 12b{1-53}. The reactions were carried out 

in a 1:1 ethanol/DMF mixture with the addition of 1M aqueous Cs2CO3 solution at 120 °C 

under microwave irradiation for 20 min. The sublibraries of commercially available terminal 

alkynes 10 and boronic acids 11, containing heterocycles and polar functionality to 

incorporate drug-like moieties into the resulting coupling products were chosen based on 

their commercial availability and the Lipinski compliance calculations mentioned above 

(Figure 4).  
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Figure 4. Terminal alkyne 10{1-5} and boronic acid 11{1-11} sublibraries 

Fluorine atom-containing 2-(1-alkynyl)benzaldehydes 3{6}, 3{10}, 3{15}, aniline 

7{3} and arylboronic acid 11{7} have been chosen because the resulting fluorine-containing 

1,2-dihydroisoquinolines and Suzuki-Miyaura coupling products are of considerable interest 
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due to the many versatile applications of fluorine-containing compounds in industry and 

medicine.14  The results for the Sonogashira and Suzuki-Miyaura couplings performed on the 

1,2-dihydroisoquinolines 8{31-51} are summarized in Table 3. 

Table 3. Library Data for Compounds 12a{1-22}and 12b{1-53}

product 8 10 or 11 yield 

(%)a 

purity 

(%)c 

 product 8 10 or 11 yield 

(%)a 

purity 

(%)c 

12a{1} 8{33} 10{1}   65 100  12b{17} 8{38} 11{1} 15b 100 

12a{2} 8{34} 10{1} 99 100  12b{18} 8{38} 11{2} 38b 100 

12a{3} 8{35} 10{2} 69 -  12b{19} 8{38} 11{3} 34b 100 

12a{4} 8{35} 10{3} 96 100  12b{20} 8{38} 11{8} 66 100 

12a{5} 8{35} 10{1} 84 100  12b{21} 8{39} 11{3} 45 98 

12a{6} 8{36} 10{1} 89 100  12b{22} 8{40} 11{2} 86 96 

12a{7} 8{36} 10{2} 54 100  12b{23} 8{40} 11{3} 68 100 

12a{8} 8{36} 10{3} 75 99  12b{24} 8{40} 11{4} 76 97 

12a{9} 8{37} 10{3}   31b 100  12b{25} 8{40} 11{6} 75 100 

12a{10} 8{37} 10{1} 62 100  12b{26} 8{40} 11{10} 52 98 

12a{11} 8{37} 10{2} 58 100  12b{27} 8{40} 11{11} 20 100 

12a{12} 8{40} 10{1} 84 98  12b{28} 8{41} 11{1} 41 99 

12a{13} 8{42} 10{1} 69 98  12b{29} 8{41} 11{2} 84 94 

12a{14} 8{43} 10{1} 75 100  12b{30} 8{42} 11{1} 26b 100 

12a{15} 8{46} 10{3} 94 100  12b{31} 8{42} 11{3} 64 98 

12a{16} 8{46} 10{4} 77 100  12b{32} 8{42} 11{10} 48b 100 

12a{17} 8{49} 10{5} 100 98  12b{33} 8{43} 11{3} 58 100 
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Table 3 continued. 

12a{18} 8{49} 10{1} 12b 100  12b{34} 8{43} 11{8} 42b 100 

12a{19} 8{49} 10{4} 25 93  12b{35} 8{43} 11{11} 0 - 

12a{20} 8{50} 10{1} 21b 100  12b{36} 8{44} 11{2} 36b 92 

12a{21} 8{50} 10{5} 100 100  12b{37} 8{44} 11{4} 69 98 

12a{22} 8{51} 10{1} 11b 100  12b{38} 8{44} 11{5} 71 98 

12b{1} 8{31} 11{5} 70 95  12b{39} 8{44} 11{7} 13b 99 

12b{2} 8{32} 11{10} 28b 98  12b{40} 8{44} 11{9} 16b 95 

12b{3} 8{32} 11{7} 16b 93  12b{41} 8{44} 11{10} 27b 92 

12b{4} 8{32} 11{5} 91 99  12b{42} 8{45} 11{1} 21b 100 

12b{5} 8{33} 11{2} 100 100  12b{43} 8{45} 11{3} 43b 100 

12b{6} 8{33} 11{6} 63 100  12b{44} 8{45} 11{8} 16b >99 

12b{7} 8{34} 11{2} 49b 97  12b{45} 8{46} 11{1} 63 100 

12b{8} 8{35} 11{2} 89 100  12b{46} 8{46} 11{3} 75 100 

12b{9} 8{35} 11{6} 91 100  12b{47} 8{46} 11{8} 58b 100 

12b{10} 8{35} 11{7} 48 100  12b{48} 8{47} 11{4} 50 96 

12b{11} 8{36} 11{2} 77 100  12b{49} 8{48} 11{4} 77 94 

12b{12} 8{36} 11{6} 100 99  12b{50} 8{49} 11{4} 93 100 

12b{13} 8{36} 11{10} 100 99  12b{51} 8{50} 11{6} 36b 100 

12b{14} 8{37} 11{2} 42b 100  12b{52} 8{50} 11{7} 18b 100 

12b{15} 8{37} 11{4} 55 100  12b{53} 8{51} 11{10} 40 85 

12b{16} 8{37} 11{10} 22b 100       

a Isolated yield after column chromatography.  b Isolated yield after preparative HPLC. c UV purity determined at 214 nm 

after preparative HPLC. 
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Under our reaction conditions, microwave irradiation has been shown not only to 

dramatically reduce the reaction times, but to provide higher yields of both the desired alkyne 

products 12a{1-22} and the Suzuki-Miyaura coupling products 12b{1-53} when compared 

to conventional heating methods. These processes have been performed in parallel on 

approximately a ~35-60 mg scale, starting from 1,2-dihydroisoquinolines 8{31-51}. All of 

the crude products 12a and 12b were isolated by either column chromatography or 

preparative HPLC. The purity of the reaction mixtures has been analyzed by TLC, LC-MS, 

and HPLC. We have used Lipinski’s rule of five10 as a general guide for bioavailability, 

because compounds with poor bioavailability face more of a challenge in becoming 

successful clinical candidates. According to Lipinski’s rules, the favorable drug candidates 

should have a molecular weight less than 500, clogP less than 5, the number of hydrogen 

bond donors less than 5 and acceptors less than 10, and the number of rotatable bonds less 

than 10. These parameters were calculated for each of the library members using the 

SYBYL15 program. The majority of the 105 1,2-dihydroisoquinolines 8{1-30}, 12a{1-22} 

and 12b{1-53} synthesized satisfy these requirements. 

3.4. CONCLUSIONS 

In summary, a simple and efficient method for the parallel synthesis of multi-

substituted 1,2-dihydroisoquinolines 8 and 12 has been developed employing a one-pot, 

three-component AgOTf and L-proline-cocatalyzed reaction of 2-(1-alkynyl)benzaldehydes, 

amines and ketones or indoles. Palladium-catalyzed couplings, such as Suzuki-Miyaura and 

Sonogashira cross-couplings have been used to further diversify the 1,2-dihydroisoquinolines 
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8, providing pure 5+ mg samples of each library compound. The average purity of the 105 

members of this library is 94.1% and the average yield is 55.7%. The elaborated, multi-

substituted 1,2-dihydroisoquinolines 8{1-30}, 12a{1-22} and 12b{1-53} have been added to 

the collection of the Kansas University NIH Center for Chemical Methodologies and Library 

Development (KU CMLD) and will be submitted to the National Institutes of Health 

Molecular Library Screening Center Network (MLSCN) for evaluation by a broad range of 

assays.  
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3.6. EXPERIMENTAL 

3.6.1. General remarks. 

The 1H (400 MHz) and 13C NMR (100 MHz) spectra were recorded in CDCl3 as the 

solvent using tetramethylsilane (TMS) as an internal standard, unless otherwise stated. 
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Chemical shifts are reported in δ units (ppm) by assigning the TMS resonance in the 1H 

NMR spectrum as 0.00 ppm and the CDCl3 resonance in the 13C NMR spectrum as 77.23 

ppm. All coupling constants, J, are reported in Hertz (Hz). Analytical thin layer 

chromatography (TLC) was performed using commercially prepared 60-mesh silica gel 

plates, and visualization was effected with short wavelength UV light (254 nm). All melting 

points are uncorrected. High resolution mass spectra (HRMS) were obtained using a 

Waters/Micromass LCT Premier TOF using EI at a voltage of 70 eV. Commercially 

available reagents were used without further purification, unless otherwise stated. The 

anhydrous organic solvents (e.g. Et2O, EtOAc, CHCl3, MeOH, EtOH, CH3CN, DMF, 

hexane, toluene, etc.) were purchased from commercial sources and used as received. The 

palladium catalysts were donated by Johnson Matthey Inc. and Kawaken Fine Chemicals Co. 

Ltd. The boronic acids were donated by Frontier Scientific and Synthonix Co. Ltd.!All 

microwave irradiation reactions were carried out on a Biotage-EXP Microwave synthesis 

system, operating at a frequency of 2450 MHz with continuous irradiation power from 0-300 

W in 2 mL oven-dried Biotage microwave vials sealed with an aluminum/Teflon® crimp top, 

which can be exposed to a maximum of 250 °C and 20 bar internal pressure.  The reaction 

temperature was measured by an IR sensor on the outer surface of the process vial. 

3.6.2. General procedure for preparation of the 2-(1-alkynyl)benzaldehydes 3. 

!



www.manaraa.com

 

 

65 

These compounds were prepared according to a procedure reported previously by our 

group.1 To a solution of the corresponding 2-bromoarenecarboxaldehyde (0.54 mmol) and 

alkyne (0.65 mmol) in Et3N (2.2 mL) was added PdCl2(PPh3)2 (0.011 mmol, 2 mol %) and 

the mixture was stirred for 5 min. Then CuI (0.0054 mmol, 1 mol %) was added and the 

reaction mixture was heated to 50 °C under a nitrogen atmosphere for 4-16 h. After 

completion, the resulting mixture was concentrated under reduced pressure and subjected to 

column chromatography on silica gel using ethyl acetate/hexanes as the eluent.  

2-[(4-Methoxyphenyl)ethynyl]benzaldehyde (3{1}) 

 This compound was obtained as a cream colored solid in a 99% yield: 

mp 47-49 °C; 1H NMR (400 MHz, CDCl3) δ 3.84 (s, 3H), 6.91 (d, J = 8.7 Hz, 2H), 7.42 (dd, 

J = 7.7, 7.7 Hz, 1H), 7.50 (d, J = 8.7 Hz, 2H), 7.59 (m, 2H), 7.93 (d, J = 7.8 Hz, 1H), 10.65 

(s, 1H).  The 1H NMR spectral data is in good agreement with the literature data.16!

2-[(3,5-Dimethoxyphenyl)ethynyl]benzaldehyde (3{2})!

 This compound was obtained as a yellow solid in a 99% yield: mp 76-

77 °C; 1H NMR (400 MHz, CDCl3) δ 3.82 (s, 6H), 6.51 (d, J = 2.2 Hz, 1H), 6.71 (d, J = 2.2 

Hz, 2H), 7.46 (t, J = 7.5 Hz, 1H), 7.59 (t, J = 7.5 Hz, 1H), 7.65 (d, J = 7.3 Hz, 1H), 7.95 (d, J 

= 7.8 Hz, 1H), 10.65 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 55.7, 84.6, 96.5, 102.8, 109.6, 
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123.8, 126.9, 127.5, 128.9, 133.5, 133.9, 136.1, 160.9, 191.9; HRMS (EI) calcd for C17H14O3 

266.09431, found 266.09490.!

2-[(3,5-Dimethoxyphenyl)ethynyl]-5-methoxybenzaldehyde (3{3})!

 This compound was obtained as a yellow solid in a 85% yield: 

mp 118-119 °C; 1H NMR (400 MHz, CDCl3) δ 3.81 (s, 6H), 3.89 (s, 3H), 6.49 (t, J = 2.2 Hz, 

1H), 6.69 (d, J = 2.2 Hz, 2H), 7.15 (dd, J = 2.7, 8.6 Hz, 1H), 7.43 (d, J = 2.6, 1H), 7.57 (d, J 

= 8.6 Hz, 1H), 10.61 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 55.7, 55.9, 84.6, 95.1, 102.5, 

109.5, 110.1, 119.7, 121.9, 124.1, 134.8, 137.5, 160.0, 160.9, 191.8; HRMS (EI) calcd for 

C18H16O4 296.10491, found 296.10490.!

5-Bromo-2-[(3,5-dimethoxyphenyl)ethynyl]benzaldehyde (3{4})!

 

This compound was prepared from the corresponding methyl ester by LiAlH4 

reduction to the alcohol and PCC oxidation. To a solution of 1.02 g (2.72 mmol) of the 

starting material!in ethyl ether (30 mL) was slowly added 1.25 g (3.26 mmol) of LiAlH4 and 

the reaction mixture was allowed to stir at room temperature for 3 h. Then brine was added 

and the layers were separated. The organic layer was dried over MgSO4, filtered and 
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concentrated in vacuo. The crude product was dissolved in methylene chloride (14 mL) and 

0.70 g (3.26 mmol) of pyridinium chlorochromate (PCC) was added. The reaction mixture 

was stirred for 10 h. After a standard work-up procedure, aldehyde 3{4} was obtained as a 

colorless solid in a 68% yield: mp 126-127 °C; 1H NMR (400 MHz, CDCl3) δ 3.81 (s, 6H), 

6.51 (s, 1H), 6.69 (d, J = 2.1 Hz, 2H), 7.50 (d, J = 8.2 Hz, 1H), 7.69 (dd, J = 1.9, 8.2 Hz, 1H), 

8.05 (d, J = 1.8 Hz, 1H), 10.54 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 55.7, 83.7, 97.6, 

102.9, 109.6, 117.7, 123.4, 125.6, 130.5, 134.8, 136.9, 137.1, 160.9, 190.4; HRMS (EI) calcd 

for C17H13O3Br 344.00480, found 344.00569. 

2-[(3-Methoxyphenyl)ethynyl]benzaldehyde (3{5}) 

 This compound was obtained as a colorless oil in a 78% yield: 1H 

NMR (400 MHz, CDCl3) δ 3.84 (s, 3H), 6.95 (dd, J = 1.5, 8.3 Hz, 1H), 7.08 (s, 1H), 7.16 (d, 

J = 7.6 Hz, 1H), 7.29 (t, J = 7.9 Hz, 1H), 7.46 (t, J = 7.5 Hz, 1H), 7.59 (t, J = 7.2 Hz, 1H), 

7.64 (d, J = 7.6 Hz, 1H), 7.95 (d, J = 7.6 Hz, 1H), 10.65 (s, 1H); 13C NMR (100 MHz, 

CDCl3) δ 55.6, 84.9, 96.5, 115.9, 116.6, 123.5, 124.4, 126.9, 127.5, 128.8, 129.8, 133.4, 

136.1, 159.7, 191.9; HRMS (EI) calcd for C16H12O2 236.08373, found 236.08409.!
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5-Fluoro-2-[(3-methoxyphenyl)ethynyl]benzaldehyde (3{6})!

 This compound was obtained as a yellow solid in a 100% yield: mp 

81-83 °C; 1H NMR (400 MHz, CDCl3) δ 3.09 (s, 3H), 6.95 (dd, J = 2.2, 8.2 Hz, 1H), 7.07 (s, 

1H), 7.15 (d, J = 7.6 Hz, 1H), 7.27-7.33 (m, 2H), 7.60-7.67 (m, 2H), 10.60 (s, 1H); 13C NMR 

(100 MHz, CDCl3) δ 55.6, 83.8, 96.2, 113.8, 114.1, 115.9, 116.6, 121.5, 121.7, 123.1, 123.3, 

124.4, 129.9, 135.4, 135.5, 137.9, 138.1, 159.7, 161.4, 163.9, 190.6 (extra peaks due to the 

13C-19F coupling); HRMS (EI) calcd for C16H11O2F 254.07433, found 254.07509. 

2-[(4-Nitrophenyl)ethynyl]benzaldehyde (3{7})!

 This compound was obtained under slightly modified reaction 

conditions. To a solution of 2-bromobenzaldehyde (0.25 mmol) in DMF (4 mL) was added 

PdCl2(PPh3)2 (0.0075 mmol, 3 mol %) and CuI (0.0050 mmol, 2 mol %) and the reaction 

mixture stirred for 2 min. Then the vial was sealed, flushed with argon and iPr2NH (0.14 mL) 

was added and the reaction mixture was heated to 70 °C. Then the alkyne (0.3 mmol) in 1 

mL of DMF was added dropwise over 5 min and the solution was stirred at 70 °C for 2 h. 

After completion of the reaction, the resulting mixture was concentrated under reduced 

pressure and subjected to column chromatography on silica gel using ethyl acetate/hexanes as 

the eluent. The product was obtained as an orange solid in a 65% yield: mp 129-131 °C;  1H 
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NMR (400 MHz, CDCl3) δ 7.55 (t, J = 7.5 Hz, 1H), 7.62-7.73 (m, 4H), 7.98 (d, J = 7.8 Hz, 

1H), 8.26 (d, J = 8.7 Hz, 2H), 10.60 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 90.1, 93.9, 

123.9, 125.3, 128.1, 129.3, 129.8, 132.6, 133.7, 134.1, 136.2, 147.6, 191.1;  HRMS (EI) 

calcd for C15H9NO3 251.05824, found 251.05877. 

2-[(3-Thiophenyl)ethynyl]benzaldehyde (3{8})!

 This compound was obtained as a yellow oil in a 68% yield: 1H NMR (400 

MHz, CDCl3) δ 7.22 (d, J = 4.9 Hz, 1H), 7.32 (m, 1H), 7.42 (t, J = 7.5 Hz, 1H), 7.53-7.62 

(m, 2H), 7.93 (d, J = 7.8 Hz, 1H), 10.61 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 84.7, 91.7, 

121.6, 125.9, 127.0, 127.4, 128.7, 129.9, 133.3, 133.9, 135.9, 191.8; HRMS (EI) calcd for 

C13H9OS 212.02958, found 212.03001. 

5-Methoxy-2-[(3-thiophenyl)ethynyl]benzaldehyde (3{9})!

 This compound was obtained as an off-white solid in an 87% yield: 

mp 74-76 °C; 1H NMR (400 MHz, CDCl3) δ 3.87 (s, 3H), 7.12 (dd, J = 2.7, 8.6 Hz, 1H), 

7.20 (d, J = 4.9 Hz, 1H), 7.33 (dd, J = 3.1, 4.8 Hz, 1H), 7.41 (d, J = 2.6 Hz, 1H), 7.54  (t, J = 

6.3 Hz, 2H), 10.57 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 55.8, 84.6, 90.2, 109.9, 119.7, 

121.9, 125.9, 129.3, 128.9, 129.8, 134.6, 137.3, 159.9, 191.7; HRMS (EI) calcd for 

C14H10O2S 242.04015, found 242.04058. 
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5-Fluoro-2-[(3-thiophenyl)ethynyl]benzaldehyde (3{10})!

 This compound was obtained as a yellow solid in an 89% yield: mp 

72-74 °C; 1H NMR (400 MHz, CDCl3) δ 7.21 (dd, J = 1.0, 4.9 Hz, 1H), 7.28 (td, J = 2.8, 8.3 

Hz, 1H), 7.34 (dd, J = 3.0, 4.9 Hz, 1H), 7.58-7.63 (m, 3H), 10.55 (d, J = 3.2 Hz, 1H); 13C 

NMR (100 MHz, CDCl3) δ 83.6, 91.4, 113.7, 113.9, 121.3, 121.4, 121.6, 123.1, 126.0, 129.8, 

129.9, 135.2, 135.3, 137.8, 137.9, 161.2, 163.7, 190.6 (extra peaks due to the 13C-19F 

coupling); HRMS (EI) calcd for C13H7OSF 230.02016, found 230.02063. 

4,5-Dioxolyl-2-[(3-thiophenyl)ethynyl]benzaldehyde ( 3{11})!

 This compound was obtained as a colorless solid in a 90% yield: mp 

118-119 °C; 1H NMR (400 MHz, CDCl3) δ 6.04 (s, 2H), 6.94 (s, 1H), 7.17 (d, J = 4.9 Hz, 

1H), 7.31 (m, 2H), 7.54 (br s, 1H), 10.40 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 84.5, 90.4, 

102.4, 105.9, 111.8, 121.4, 123.5, 125.8, 129.5, 129.6, 132.4, 148.6, 152.3, 189.9; HRMS 

(EI) calcd for C14H8O3S 256.01941, found 256.02003. 

2-[(3-Tolyl)ethynyl]benzaldehyde ( 3{12})!

O

H

Me

   This compound was obtained as a yellow solid in an 81% yield: mp 

36-37 °C; 1H NMR (300 MHz, CDCl3) δ 2.38 (s, 3H), 7.19-7.65 (m, 8H), 7.95 (d, J = 6.0 Hz, 
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1H), 10.66 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 21.5, 84.8, 96.8, 122.4, 127.5, 128.6, 

128.7, 128.9, 130.2, 132.5, 133.4, 133.9, 166.6, 191.9; HRMS (EI) calcd for C16H12O 

220.08880, found 221.09611. 

5-Nitro-2-(phenylethynyl)benzaldehyde ( 3{13})!

 This compound was obtained as a yellow solid in an 89% yield: mp 

111-112 °C; 1H NMR (300 MHz, CDCl3) δ 7.42-7.46 (m, 3H), 7.61 (dd, J = 6.8, 1.6 Hz, 

2H), 7.81 (d, J = 8.0 Hz, 1H), 8.40 (dd, J = 7.9, 1.8 Hz, 1H), 8.75 (d, J = 2.4 Hz, 1H), 10.65 

(s, 1H); 13C NMR (100 MHz, CDCl3) δ 83.8, 101.9, 121.4, 122.9, 127.9, 128.9, 130.3, 132.2, 

132.6, 134.6, 136.7, 147.5, 189.5; HRMS (EI) calcd for C15H19NO3 251.05821, found 

252.06553. 

5-Bromo-2-[(4-methoxyphenyl)ethynyl]benzaldehyde ( 3{14})!

   This compound was obtained as a white solid in a 56% yield: mp 98-

100 °C; 1H NMR (400 MHz, CDCl3) δ 3.83 (s, 3H), 6.89 (d, J = 8.7 Hz, 2H), 7.49-7.45 (m, 

3H), 7.65 (dd, J = 2.3, 8.2 Hz, 1H), 8.03 (d, J = 2.0 Hz, 1H), 10.53 (s, 1H); 13C NMR (100 

MHz, CDCl3) δ 55.3, 82.5, 97.9, 114.1, 114.2, 124.2, 126.2, 130.2, 133.2, 134.0, 134.3, 

136.6, 160.4, 190.4; HRMS calcd for C16H11BrO2 315.1613, found 315.1633. 
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5-Fluoro-2-(phenylethynyl)benzaldehyde ( 3{15})!

 This compound was obtained as a yellow solid in an 84% yield: mp 

51-52 °C; 1H NMR (300 MHz, CDCl3) δ 7.30 (td, J = 6.3, 2.1 Hz, 1H), 7.37-7.40 (m, 3H), 

7.54-7.66 (m, 4H), 10.60 (d, J = 2.4 Hz, 1H); the 1H NMR spectral data is in good agreement 

with the literature data.17 

3.6.3. General procedure for preparation of the 1,2-dihydroisoquinolines 8a 

!

These compounds were prepared according to a procedure reported previously by Wu 

and co-workers.18 To a solution of the corresponding 2-(1-alkynyl)benzaldehyde 3 (1.08 

mmol), aniline 7 (1.08 mmol) and ketone 6 (5.38 mmol) in EtOH (5.4 mL) were added 

AgOTf (0.108 mmol, 10 mol %) and L-proline (0.108 mmol, 10 mol %) and the mixture was 

stirred at 50-60 °C under a nitrogen atmosphere for 16 h. After completion of the reaction, 

the resulting mixture was concentrated under reduced pressure, quenched with water (30 

mL), extracted with EtOAc (2 × 30 mL) and dried over Na2SO4 (anhydrous). The solvent 

was evaporated and the reaction mixture was subjected to column chromatography on silica 

gel using ethyl acetate/hexanes as the eluent.  
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3.6.4. Data for the 1,2-dihydroisoquinolines subjected to further elaboration 

Compound 8{31} 

 This compound was obtained as a yellow oil in a 55% yield: 1H NMR 

(400 MHz, CDCl3) δ 2.00 (s, 3H), 2.21 (s, 3H), 2.41 (dd, J = 4.7, 16.9 Hz, 1H), 3.15 (dd, J = 

8.9, 17.0 Hz, 1H), 5.40 (dd, J = 4.7, 8.9 Hz, 1H), 6.69 (s, 1H), 6.76 (d, J = 8.8 Hz, 2H), 6.94 

(t, J = 6.8 Hz, 2H), 7.04 (t, J = 7.3 Hz, 2H), 7.10-7.25 (m, 6H); 13C NMR (100 MHz, CDCl3) 

δ 21.7, 31.9, 47.2, 60.7, 85.4, 113.4, 124.4, 124.5, 124.9, 125.3, 127.2, 127.7, 127.8, 128.7, 

129.3, 131.6, 132.4, 137.1, 137.6, 138.4, 140.1, 147.0, 207.3;  HRMS (EI) calcd for 

C25H20INO 477.05900, found 478.06620. 

Compound 8{32} 

! This compound was obtained as a yellow solid in a 55% yield: mp 

159-161 °C; 1H NMR (400 MHz, CDCl3) δ 2.08 (s, 3H), 2.48 (dd, J = 4.6, 17.0 Hz, 1H), 

3.24 (dd, J = 9.2, 16.9 Hz, 1H), 3.73 (s, 3H), 5.47 (dd, J = 4.6, 9.1 Hz, 1H), 6.70 (s, 1H), 6.78 

(d, J = 8.8 Hz, 2H), 6.85 (d, J = 8.7 Hz, 2H), 6.99 (d, J = 7.4 Hz, 1H), 7.10 (td, J = 1.6, 7.2 

Hz, 1H), 7.18-7.24 (m, 2H), 7.32 (d, J = 8.7 Hz, 2H), 7.39 (d, J = 8.7 Hz, 2H); 13C NMR 

(100 MHz, CDCl3) δ 31.9, 47.1, 55.4, 60.8, 85.4, 111.8, 114.2, 124.5, 124.6, 126.2, 126.9, 
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127.7, 128.4, 129.5, 131.8, 132.2, 137.5, 139.7, 147.1, 159.8, 207.3;  HRMS (EI) calcd for 

C25H22INO2 495.06952, found 495.07023.!

Compound 8{33} 

 This compound was obtained as a yellow solid in a 49% yield: mp 

175-177 °C; 1H NMR (400 MHz, CDCl3) δ 0.87 (dd, J = 2.9, 7.8 Hz, 2H), 1.10 (dd, J = 2.8, 

4.4 Hz, 2H), 1.84 (m, 1H), 2.54 (dd, J = 4.3, 16.4 Hz, 1H), 3.38 (dd, J = 9.6, 16.4 Hz, 1H), 

3.77 (s, 3H), 5.50 (dd, J = 4.2, 9.6 Hz, 1H), 6.70 (s, 1H), 6.81 (dd, J = 8.9, 10.9 Hz, 4H), 7.02 

(d, J = 7.4 Hz, 1H), 7.13 (td, J = 10.0, 7.5 Hz, 1H), 7.22-7.27 (m, 2H), 7.34 (d, J = 8.8 Hz, 

2H), 7.42 (d, J = 8.8 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 11.5, 11.7, 22.3, 46.7, 55.5, 

61.2, 85.3, 111.9, 114.1, 124.6, 124.7, 125.3, 126.9, 127.8, 128.6, 129.6, 131.9, 132.4, 137.6, 

139.8, 147.2, 159.9, 209.7; HRMS (EI) calcd for C27H24INO2 521.08517, found 521.08653.  

Compound 8{34} 

 This compound was obtained as a yellow solid in a 67% yield: mp 

144-146 °C; 1H NMR (400 MHz, CDCl3) δ 2.12 (s, 3H), 2.51 (dd, J = 4.6, 17.0 Hz, 1H), 3.24 

(dd, J = 9.1, 16.9 Hz, 1H), 3.74 (s, 3H), 5.49 (dd, J = 4.6, 9.0 Hz, 1H), 6.76-6.80 (m, 2H), 

6.86 (d, J = 8.6 Hz, 2H), 7.02-7.07 (m, 3H), 7.13-7.28 (m, 4H), 7.35 (d, J = 8.6 Hz, 2H); 13C 

NMR (100 MHz, CDCl3) δ 31.9, 47.3, 55.4, 60.7, 85.6, 112.8, 113.6, 114.0, 119.7, 124.4, 
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124.9, 125.4, 127.4, 127.8, 129.8, 131.5, 132.5, 137.7, 138.7, 139.9, 147.0, 159.9, 207.3; 

HRMS (EI) calcd for C25H22INO2 495.06952, found 495.07074. 

Compound 8{35} 

 This compound was obtained as a yellow solid in a 63% yield: mp 

129-131 °C; 1H NMR (400 MHz, CDCl3) δ 2.12 (s, 3H), 2.50 (dd, J = 4.5, 17.3 Hz, 1H), 3.23 

(dd, J = 8.9, 17.3 Hz, 1H), 3.72 (s, 3H), 5.45 (dd, J = 4.6, 8.8 Hz, 1H), 6.74-6.77 (m, 3H), 

6.85 (d, J = 8.6 Hz, 2H), 6.92 (t, J = 8.5 Hz, 1H), 7.00 (s, 1H), 7.05 (d, J = 7.7 Hz, 2H), 7.14-

7.23 (m, 2H), 7.35 (d, J = 8.6 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 31.8, 46.9, 55.3, 60.3, 

85.8, 112.3, 112.5, 112.6, 113.9, 114.6, 114.8, 119.5, 124.3, 126.4, 126.5, 127.7, 129.8, 

134.3, 134.4, 137.7, 138.4, 139.3, 146.8, 159.9, 160.8, 163.3, 206.8 (extra peaks due to the 

13C-19F coupling); HRMS (EI) calcd for C25H21FINO2 513.06010, found 513.06164.  

Compound 8{36} 

! This compound was obtained as a yellow solid in a 57% yield: mp 

172-174 °C; 1H NMR (400 MHz, CDCl3) δ 2.12 (s, 3H), 2.49 (dd, J = 4.5, 17.0 Hz, 1H), 3.23 

(dd, J = 9.2, 16.9 Hz, 1H), 3.71 (s, 6H), 5.47 (dd, J = 4.5, 9.1 Hz, 1H), 6.35 (t, J = 2.1 Hz, 

1H), 6.63 (d, J = 2.2 Hz, 2H), 6.79 (s, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.01 (d, J = 7.3 Hz, 1H), 
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7.14 (td, J = 1.5, 7.2 Hz, 1H), 7.20-7.27 (m, 2H), 7.35 (d, J = 8.7 Hz, 2H); 13C NMR (100 

MHz, CDCl3) δ 31.9, 47.2, 55.5, 60.7, 85.6, 100.6, 105.4, 113.6, 124.3, 124.9, 125.3, 127.4, 

127.8, 131.4, 132.5, 137.7, 139.4, 139.9, 147.1, 161.0, 207.2;  HRMS (EI) calcd for 

C26H24INO3 525.08009, found 525.08176.!

Compound 8{37} 

 This compound was obtained as a yellow oil in a 45% yield: 1H 

NMR (400 MHz, CDCl3) δ 2.13 (s, 3H), 2.47 (dd, J = 3.9, 17.1 Hz, 1H), 3.23 (dd, J = 9.3, 

17.0 Hz, 1H), 3.70 (s, 6H), 3.73 (s, 3H), 5.42 (dd, J = 4.1, 8.9 Hz, 1H), 6.33 (s, 1H), 6.43 (d, 

J = 8.1 Hz, 1H), 6.59 (s, 1H), 6.62 (s, 2H), 6.78 (br s, 2H), 6.87 (d, J = 8.3 Hz, 2H), 7.18 (d, J 

= 8.3 Hz, 1H), 7.36 (m, 3H); 13C NMR (100 MHz, CDCl3) δ 31.9, 47.1, 55.4, 55.5, 60.7, 

85.3, 100.2, 104.9, 110.6, 113.6, 117.4, 123.9, 124.5, 126.4, 134.3, 137.6, 137.9, 139.5, 

147.3, 159.4, 160.9, 207.2; HRMS (EI) calcd for C27H26INO4 555.09065, found 555.09221. 

Compound 8{38} 

 This compound was obtained as a yellow solid in a 63% yield: mp 

177-179 °C; 1H NMR (400 MHz, CDCl3) δ 2.70 (dd, J = 4.2, 15.6 Hz, 1H), 3.57 (s, 6H), 
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3.72 (dd, J = 10.1, 15.6 Hz, 1H), 5.64 (dd, J = 4.2, 10.1 Hz, 1H), 6.27 (t, J = 2.2 Hz, 1H), 

6.40 (dd, J = 1.7, 3.6 Hz, 1H), 6.51 (d, J = 2.2 Hz, 2H), 6.82 (m, 3H), 7.05-7.35 (m, 7H), 

7.49 (d, J = 1.1 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 42.4, 55.3, 61.8, 85.8, 100.8, 105.3, 

112.6, 113.3, 118.5, 124.3, 124.9, 125.3, 127.4, 127.9, 131.5, 132.1, 137.6, 139.1, 140.0, 

147.0, 147.1, 152.9, 160.7, 187.4; HRMS (EI) calcd for C29H24INO4 577.07500, found 

577.07660. 

Compound 8{40} 

 This compound was obtained as a yellow solid in a 49% yield: mp 

169-171 °C; 1H NMR (400 MHz, CDCl3) δ 2.07 (s, 3H), 2.45 (dd, J = 4.6, 16.7 Hz, 1H), 3.23 

(dd, J = 9.3, 16.7 Hz, 1H), 5.41 (dd, J = 4.6, 9.3 Hz, 1H), 6.78 (s, 1H), 6.85 (d, J = 8.7 Hz, 

2H), 6.99 (d, J = 7.4 Hz, 1H), 7.10-7.24 (m, 6H), 7.36 (d, J = 8.7 Hz, 2H); 13C NMR (100 

MHz, CDCl3) δ 32.1, 47.2, 61.0, 85.6, 112.6, 123.4, 124.2, 124.9, 125.4, 126.1, 127.2, 127.8, 

131.3, 132.2, 135.4, 137.6, 139.2, 147.2, 207.4; HRMS (EI) calcd for C22H18INOS 

471.01538, found 471.01680. 

Compound 8{41} 

 This compound was obtained as a colorless solid in a 65% yield: mp 

153-155 °C; 1H NMR (400 MHz, CDCl3) δ 0.85 (dd, J = 3.9, 7.7 Hz, 2H), 1.08 (t, J = 4.0 Hz, 
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2H), 1.84 (m, 1H), 2.52 (dd, J = 4.3, 16.1 Hz, 1H), 3.36 (dd, J = 9.7, 16.1 Hz, 1H), 5.44 (dd, 

J = 4.3, 9.7 Hz, 1H), 6.77 (s, 1H), 6.83 (d, J = 8.6 Hz, 2H), 7.02 (d, J = 7.4 Hz, 1H), 7.12-

7.27 (m, 6H), 7.37 (d, J = 8.5 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 11.4, 11.7, 22.4, 46.8, 

61.4, 85.5, 112.6, 123.6, 124.2, 124.8, 125.4, 125.9, 126.3, 127.2, 127.8, 131.4, 132.3, 135.5, 

137.6, 139.3, 147.2, 209.6; HRMS (EI) calcd for C24H20INOS 497.03103, found 497.03223. 

Compound 8{42} 

! This compound was obtained as a yellow oil in a 47% yield: 1H NMR 

(400 MHz, CDCl3) δ 2.11 (s, 3H), 2.45 (dd, J = 4.4, 16.8 Hz, 1H), 3.25 (dd, J = 9.5, 16.7 Hz, 

1H), 3.74 (s, 3H), 5.37 (dd, J = 4.4, 9.5 Hz, 1H), 6.58 (d, J = 2.2 Hz, 1H), 6.76-6.80 (m, 2H), 

6.85 (d, J = 8.8, Hz, 2H), 7.08 (s, 1H), 7.15-7.20 (m, 2H), 7.32 (d, J = 7.6 Hz, 2H), 7.37 (d, J 

= 8.9 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 32.1, 47.2, 55.6, 61.2, 85.4, 110.6, 112.7, 

113.8, 122.7, 124.0, 124.5, 125.9, 126.1, 126.3, 133.4, 134.0, 137.7, 139.4, 147.4, 159.3, 

207.5;  HRMS (EI) calcd for C25H22INO2 501.02595, found 501.02726.!

Compound 8{43} 

 This compound was obtained as a colorless solid in a 75% yield: mp 

155-157 °C; 1H NMR (400 MHz, CDCl3) δ 2.71 (dd, J = 4.3, 15.2 Hz, 1H), 3.72 (dd, J = 
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10.1, 15.2 Hz, 1H), 5.53 (dd, J = 4.3, 9.9 Hz, 1H), 6.42 (m, 1H), 6.75-6.82 (m, 4H), 6.88 (d, J 

= 1.4 Hz, 1H), 6.94 (td, J = 1.3, 8.3 Hz, 1H), 7.04 (d, J = 5.0 Hz, 1H), 7.10-7.12 (m, 2H), 

7.20-7.25 (m, 1H), 7.35 (d, J = 8.6 Hz, 2H), 7.48 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 

42.1, 61.9, 85.9, 111.5, 112.4, 112.6, 114.7, 114.9, 118.6, 123.6, 124.2, 125.7, 126.1, 126.3, 

126.4, 127.7, 133.7, 133.8, 135.0, 137.7, 138.7, 146.9, 147.2, 152.9, 160.7, 163.2, 187.3 

(extra peaks due to the 13C-19F coupling); HRMS (EI) calcd for C25H17FINO2S 541.00087, 

found 541.00204. 

Compound 8{44} 

!This compound was obtained as a yellow oil in a 59% yield:  1H NMR 

(400 MHz, CDCl3) δ 2.15 (s, 3H), 2.49 (dd, J = 4.7, 16.9 Hz, 1H), 3.24 (dd, J = 9.1, 16.9 Hz, 

1H), 3.65 (s, 3H), 5.39 (dd, J = 4.7, 9.0 Hz, 1H), 6.62 (d, J = 8.9 Hz, 2H), 6.68 (s, 1H), 6.98 

(d, J = 8.9 Hz, 2H), 7.13 (d, J = 8.2 Hz, 1H), 7.17 (d, J = 1.6 Hz, 1H), 7.20-7.27 (m, 3H), 

7.34 (dd, J = 1.9, 8.1 Hz, 1H), 7.49 (dd, J = 1.4, 8.0 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 

31.9, 47.5, 55.5, 61.3, 110.6, 114.2, 119.9, 124.5, 126.0, 127.6, 128.4, 128.5, 128.7, 130.6, 

130.9, 133.4, 137.3, 140.5, 141.9, 155.7, 207.1;  HRMS (EI) calcd for C25H22BrNO2 

447.08338, found 447.08396.!
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Compound 8{46} 

 This compound was obtained as a yellow solid in a 73% yield: mp 

188-190 °C; 1H NMR (400 MHz, CDCl3) δ 2.12 (s, 3H), 2.49 (dd, J = 4.6, 16.9 Hz, 1H), 3.24 

(dd, J = 9.1, 16.9 Hz, 1H), 5.39 (dd, J = 4.6, 9.1 Hz, 1H), 6.76 (m, 2H), 6.84 (d, J = 8.8 Hz, 

2H), 6.93 (t, J = 8.5 Hz, 1H), 7.14 (m, 1H), 7.18-7.24 (m, 3H), 7.40 (d, J = 8.9 Hz, 2H); 13C 

NMR (100 MHz, CDCl3) δ 31.9, 47.0, 60.7, 85.9, 111.8, 112.5, 112.7, 113.7, 114.7, 114.9, 

117.6, 123.5, 124.2, 126.0, 126.2, 126.3, 126.4, 127.7, 134.1, 134.2, 135.0, 137.8, 139.1, 

147.1, 160.8, 163.3, 206.9 (extra peaks due to the 13C-19F coupling); HRMS (EI) calcd for 

C22H17FINOS 489.00596, found 489.00696. 

Compound 8{47} 

! This compound was obtained as a yellow oil in an 86% yield: 1H NMR 

(400 MHz, CDCl3) δ 1.08 (t, J = 7.3 Hz, 3H), 1.25 (s, 3H), 2.35-2.41 (m, 2H), 2.55 (dd, J = 

4.8, 17.1 Hz, 1H), 3.28 (dd, J = 8.9, 17.1 Hz, 1H), 5.62 (dd, J = 4.8, 8.9 Hz, 1H), 6.77 (s, 

1H), 6.86 (d, J = 8.7 Hz, 2H), 7.28-7.40 (m, 5H), 7.45 (dd, J = 2.9, 6.5 Hz, 2H), 7.95 (d, J = 

1.9 Hz, 1H), 8.12 (dd, J = 2.2, 8.4 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 7.8, 29.7, 37.8, 

45.7, 60.8, 87.1, 111.0, 121.2, 123.4, 124.8, 125.2, 127.8, 129.0, 129.6, 132.1, 136.2, 137.9, 

138.0, 144.7, 146.2, 146.3, 146.4, 150.7, 209.0.!



www.manaraa.com

 

 

81 

Compound 8{48} 

! This compound was obtained as a yellow oil in a 65% yield: 1H NMR 

(400 MHz, CDCl3) δ 1.06 (t, J = 7.2 Hz, 3H), 2.35-2.38(m, 2H), 2.49 (dd, J = 4.7, 16.9 Hz, 

1H), 3.23 (dd, J = 9.2, 16.9 Hz, 1H), 5.50 (dd, J = 4.6, 9.1 Hz, 1H), 6.78 (br s, 2H), 6.85 (d, J 

= 8.5 Hz, 2H), 6.90 (td, J = 2.2, 8.6 Hz, 1H), 7.21-7.29 (m, 4H), 7.36 (d, J = 8.5 Hz, 2H), 

7.44 (d, J = 6.6 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 7.8, 37.9, 45.8, 56.9, 60.5, 85.7, 

112.3, 112.5, 112.6, 114.6, 114.8, 124.4, 124.5, 126.4, 126.5, 127.0, 127.9, 128.8, 128.9, 

134.4, 134.5, 136.8, 137.7, 139.3, 139.4, 146.8, 160.9, 163.3, 209.7 (extra peaks due to the 

13C-19F coupling).!

3.6.5. Data for selected 1,2-dihydroisoquinolines 8 

Compound 8{5} 

 This compound was obtained as a yellow oil in a 15% yield: 1H 

NMR (400 MHz, CDCl3) δ 2.80 (dd, J = 4.3, 15.8 Hz, 1H), 3.57 (s, 6H), 3.75 (m, 4H), 3.80 

(s, 3H), 5.76 (dd, J = 4.2, 9.7 Hz, 1H), 6.26 (s, 1H), 6.46 (dd, J = 1.6, 3.4 Hz, 1H), 6.49 (s, 

2H), 6.69 (s, 1H), 6.82 (dd, J = 2.4, 8.4 Hz, 1H), 6.85 (s, 1H), 7.06 (d, J = 8.7 Hz, 2H), 7.14 

(d, J = 3.3 Hz, 1H), 7.23 (d, J = 8.4 Hz, 1H), 7.53 (s, 1H), 7.75 (d, J = 8.8 Hz, 2H); 13C NMR 
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(100 MHz, CDCl3) δ 42.2, 51.9, 55.3, 55.6, 60.9, 100.6, 104.9, 110.6, 113.7, 113.9, 114.2, 

118.6, 120.7, 123.0, 124.5, 126.6, 130.6, 134.6, 137.5, 139.3, 147.2, 151.3, 153.0, 159.5, 

160.9, 167.1, 187.3;  HRMS (EI) calcd for C32H29NO7 539.19439, found 539.19565. 

Compound 8{27} 

 This compound was obtained as a yellow oil in a 78% yield: 1H NMR 

(400 MHz, CDCl3) δ 2.07 (s, 3H), 2.44 (dd, J = 4.9, 16.9 Hz, 1H), 3.17 (dd, J = 8.9, 16.9 Hz, 

1H), 3.57 (s, 3H), 5.32 (dd, J = 4.9, 8.9 Hz, 1H), 6.54-6.56 (m, 2H), 6.63 (s, 1H), 6.69 (dd, J 

= 2.5, 8.7 Hz, 1H), 6.86 (td, J = 2.6, 8.6 Hz, 1H), 6.89-6.92 (m, 2H), 7.12-7.19 (m, 4H), 7.43 

(dd, J = 1.3, 8.1 Hz, 2H). 13C NMR (100 MHz, CDCl3) δ 32.0, 47.4, 55.5, 61.4, 110.8, 112.5, 

112.7, 114.2, 114.4, 114.6, 124.2, 124.4, 125.9, 126.0, 127.4, 127.5, 128.3, 128.6, 133.6, 

133.7, 137.4, 140.6, 155.5, 160.6, 163.1, 207.3 (extra peaks due to the 13C-19F coupling); 

HRMS (EI) calcd for C25H22FNO2 388.17130, found 388.17033. 

3.6.6. General procedure for preparation of the 1-(3-indolyl)-1,2-dihydroisoquinolines 

8b 

To a solution of the corresponding 2-(1-alkynyl)benzaldehyde 3 (1.08 mmol), aniline 7 

(1.08 mmol) and indole 9 (1.08 mmol) in EtOH (5.4 mL) were added AgOTf (0.108 mmol, 

10 mol %) and L-proline (0.108 mmol, 10 mol %) and the mixture was stirred at 50-60 °C 

under a nitrogen atmosphere for 16 h. 
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!

After completion of the reaction, the resulting mixture was concentrated under reduced 

pressure, quenched with water (30 mL), extracted with EtOAc (2 × 30 mL) and dried over 

Na2SO4 (anhydrous). The solvent was evaporated and the reaction mixture was subjected to 

column chromatography on silica gel using ethyl acetate/hexanes as the eluent.  

3.6.7. Data for 1-(3-indolyl)-1,2-dihydroisoquinolines subjected to further elaboration 

Compound 8{49} 

! This compound was obtained as an orange solid in a 69% yield: mp 

125-127 °C; 1H NMR (400 MHz, CDCl3) δ 6.25 (s, 1H), 6.57 (s, 1H), 6.60 (s, 1H), 6.85 (d, J 

= 7.7 Hz, 2H), 6.91-6.96 (m, 2H), 7.09-7.20 (m, 7H), 7.42 (d, J = 7.6 Hz, 2H), 7.77 (s, 1H), 

8.01 (d, J = 5.1 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 61.4, 84.9, 111.8, 113.1, 113.3, 

114.5, 114.8, 117.2, 119.2, 120.1, 122.5, 123.5, 123.7, 125.7, 125.9, 126.2, 126.3, 126.5, 

128.2, 133.9, 134.1, 135.7, 136.7, 137.8, 139.2, 147.1, 160.5, 162.9 (extra peaks due to the 

13C-19F coupling);  HRMS (EI) calcd for C27H18FIN2S 548.02194, found 548.02312.!
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Compound 8{50}!

 This compound was obtained as a yellow solid in a 46% yield: mp 

170-172 °C; 1H NMR (400 MHz, CDCl3) δ 6.30 (s, 1H), 6.75 (s, 2H), 6.89 (d, J = 8.8 Hz, 

2H), 6.97-7.05 (m, 2H), 7.11-7.19 (m, 3H), 7.29 (dd, J = 5.5, 8.3 Hz, 1H), 7.35-7.50 (m, 5H), 

8.30 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 60.3, 84.4, 101.8, 111.8, 111.9, 112.4, 112.5, 

112.6, 114.1, 114.3, 116.4, 116.7, 120.4, 122.9, 123.0, 123.8, 124.2, 124.9, 125.6, 125.7, 

125.8, 126.0, 126.1, 126.7, 127.7, 127.8, 132.9, 134.9, 137.3, 138.1, 138.4, 146.4, 159.9, 

162.4 (extra peaks due to the 13C-19F coupling);  HRMS (EI) calcd for C28H17FIN3S 

573.01719, found 573.01856. 

Compound 8{51} 

! This compound was obtained as a yellow oil in a 75% yield: 1H NMR 

(400 MHz, CDCl3) δ 3.72 (s, 3H), 3.81 (s, 3H), 6.18 (s, 1H), 6.55 (s, 1H), 6.61 (s, 1H), 6.74 

(s, 1H), 6.79 (d, J = 8.6 Hz, 2H), 6.86 (d, J = 8.6 Hz, 2H), 7.11-7.21 (m, 5H), 7.42-7.47 (m, 

3H), 7.75 (br s, 1H); 13C NMR (100 MHz, CDCl3) δ 55.5, 56.1, 61.8, 84.3, 101.7, 111.7, 

112.3, 112.4, 112.8, 113.5, 117.4, 122.9, 123.3, 124.3, 125.2, 125.7, 126.2, 126.3, 126.5, 
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131.9, 133.9, 134.3, 137.8, 139.6, 147.5, 154.2, 158.9; HRMS (EI) calcd for C29H23IN2O2S 

590.05249, found 590.05457.!

3.6.8. Data for selected 1-(3-indolyl)-1,2-dihydroisoquinolines 

Compound 8{2} 

 This compound was obtained as an orange oil in a 69% yield: 1H NMR 

(400 MHz, CDCl3) δ 3.68 (s, 3H), 3.71 (s, 3H), 6.29 (s, 1H), 6.51 (s, 1H), 6.67-6.74 (m, 5H), 

7.04 (d, J = 8.7 Hz, 2H), 7.14-7.28 (m, 7H), 7.44 (d, J = 8.5 Hz, 2H), 7.93 (s, 1H), 8.12 (d, J 

= 7.5 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 55.3, 55.6, 62.3, 110.1, 111.6, 113.8, 114.2, 

118.9, 119.5, 119.8, 122.1, 123.3, 123.9, 124.3, 125.9, 126.0, 126.1, 127.3, 129.1, 130.7, 

131.8, 132.6, 136.6, 141.4, 141.9, 154.9, 159.4; HRMS (EI) calcd for C31H26N2O2 

458.19942, found 458.20049. 

Compound 8{7} 

! This compound was obtained as a yellow oil in a 29% yield: 1H 

NMR (400 MHz, CDCl3) δ 2.30 (s, 3H), 3.55 (s, 3H), 3.81 (s, 3H), 6.50 (s, 1H), 6.63 (s, 1H), 

6.69 (d, J = 7.8 Hz, 1H), 6.76 (d, J = 9.0 Hz, 1H), 6.85 (s, 1H), 6.90 (t, J = 7.4 Hz, 1H), 6.96 

(d, J = 7.6 Hz, 1H), 7.01-7.11 (m, 5H), 7.20 (dd, J = 5.6, 8.2 Hz, 1H), 7.28 (d, J = 10.2 Hz, 
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1H), 7.76 (d, J = 8.5 Hz, 3H), 7.89 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 12.9, 51.9, 55.3, 

60.8, 110.6, 112.4, 112.7, 113.3, 113.5, 113.9, 114.6, 114.8, 115.6, 119.5, 119.8, 120.2, 

120.8, 121.7, 122.8, 126.3, 126.4, 127.2, 127.9, 129.6, 130.4, 131.8, 135.1, 135.2, 135.4, 

139.5, 141.1, 152.4, 159.8, 160.8, 163.3, 167.1 (extra peaks due to the 13C-19F coupling);  

HRMS (EI) calcd for C33H27N2FO3 518.20056, found 518.20193.!

Compound 8{20}  

 This compound was obtained as a yellow oil in a 63% yield: 1H NMR 

(400 MHz, CDCl3) δ 2.23 (s, 3H), 3.55 (s, 3H), 3.66 (s, 3H), 6.29 (s, 1H), 6.58 (s, 2H), 6.66 

(d, J = 8.9 Hz, 2H), 6.95 (d, J = 7.6 Hz, 1H), 7.02-7.06 (m, 3H), 7.13-7.28 (m, 8H), 7.36 (s, 

1H), 8.13 (d, J = 5.9 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 21.7, 32.9, 55.6, 62.2, 109.7, 

111.3, 111.4, 114.2, 117.6, 119.3, 119.6, 121.7, 123.8, 124.5, 125.2, 126.1, 127.3, 127.9, 

128.0, 128.2, 128.6, 128.7, 132.2, 132.4, 137.4, 137.9, 138.3, 141.5, 142.3, 154.9; HRMS 

(EI) calcd for C32H28N2O 456.22015, found 456.22151. 

Compound 8{21} 

 This compound was obtained as a yellow oil in a 72% yield: 1H NMR 

(400 MHz, CDCl3) δ 2.22 (s, 3H), 3.66 (s, 3H), 6.29 (s, 1H), 6.56 (s, 1H), 6.66 (d, J = 8.9 
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Hz, 2H), 6.73 (s, 1H), 6.95 (d, J = 7.5 Hz, 1H), 7.01-7.05 (m, 3H), 7.12-7.29 (m, 8H), 7.36 

(s, 1H), 7.85 (s, 1H), 8.11 (d, J = 8.2 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 21.7, 55.6, 

62.2, 111.4, 111.5, 111.6, 114.2, 119.1, 119.6, 119.8, 122.1, 123.3, 123.4, 123.8, 124.5, 

125.2, 125.8, 126.1, 126.3, 127.4, 128.3, 128.5, 128.7, 131.9, 132.4, 141.4, 142.3, 154.9; 

HRMS (EI) calcd for C31H26N2O 442.20450, found 442.20575. 

3.6.9. General procedure for the microwave-assisted Sonogashira coupling to prepare 

1,2-dihydroisoquinolines 12a{1-22} 

!

The 1,2-dihydroisoquinolines 8 (0.8-1.2 mmol), the alkyne 10 (1.2 equiv), 2 mol % 

PdCl2(PPh3)2, 1 mol % CuI and Et3N (1.0-2.0 mL) were mixed in a 0.5-2.0 mL Biotage 

microwave vial equipped with a magnetic stirrer. The vessel was placed in the microwave 

reactor and irradiated so as to ramp the temperature up from room temperature to 60 oC and 

then held at that temperature for 30 min. The mixture was then cooled down and the solvent 
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was evaporated. The reaction mixture was purified by either column chromatography or 

preparative HPLC to afford the corresponding products 12a{1-22}. 

3.6.10. Data for selected 1,2-dihydroisoquinolines prepared via Sonogashira coupling 

Compound 12a{2} 

 This compound was obtained as a yellow oil in a 99% yield: 1H 

NMR (400 MHz, CDCl3) δ 2.12 (s, 3H), 2.54-2.59 (m, 3H), 3.23 (dd, J = 8.7, 16.8 Hz, 1H), 

3.73-3.75 (m, 5H), 5.55 (dd, J = 5.0, 8.6 Hz, 1H), 6.76-6.78 (m, 2H), 6.98 (d, J = 8.7 Hz, 

3H), 7.04-7.07 (m, 2H), 7.12-7.28 (m, 6H); 13C NMR (100 MHz, CDCl3) δ 24.1, 31.9, 47.4, 

55.4, 60.5, 61.4, 82.7, 85.4, 112.8, 113.3, 114.0, 116.6, 119.7, 121.9, 124.9, 125.4, 127.3, 

127.8, 129.7, 131.6, 132.2, 132.6, 138.9, 139.9, 146.9, 159.9, 207.3;  HRMS (EI) calcd for 

C29H27NO3 437.19908, found 437.20032. 

Compound 12a{12} 

This compound was obtained as a yellow oil in an 84% yield: 1H 

NMR (400 MHz, CDCl3) δ 2.10 (s, 3H), 2.53 (dd, J = 4.9, 16.5 Hz, 1H), 2.62 (t, J = 6.2 Hz, 

2H), 3.22 (dd, J = 8.9, 16.6 Hz, 1H), 3.4 (t, J = 6.2 Hz, 2H), 5.48 (dd, J = 5.0, 8.9 Hz, 1H), 

6.77 (s, 1H), 6.98 (d, J = 8.6 Hz, 2H), 7.03 (d, J = 7.5 Hz, 1H), 7.12-7.23 (m, 8H); 13C NMR 

(100 MHz, CDCl3) δ 24.1, 32.1, 47.3, 60.9, 61.4, 82.7, 85.5, 112.4, 116.8, 121.8, 123.4, 
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124.9, 125.5, 126.0, 126.2, 127.2, 127.8, 131.5, 132.3, 132.4, 135.6, 139.4, 147.1, 207.5; 

HRMS (EI) calcd for C26H23NO2S 413.14501, found 413.14440. 

Compound 12a{16} 

This compound was obtained as a yellow oil in a 77% yield: 1H 

NMR (400 MHz, CDCl3) δ 2.14 (s, 3H), 2.55 (dd, J = 4.7, 16.9 Hz, 1H), 3.26 (dd, J = 8.9, 

16.9 Hz, 1H), 3.66 (br s, 3H), 5.48 (dd, J = 4.8, 8.7 Hz, 1H), 6.78-6.81 (m, 2H), 6.95 (t, J = 

8.5 Hz, 1H), 7.05 (d, J = 8.2 Hz, 2H), 7.15 (s, 1H), 7.21-7.27 (m, 5H), 7.47-7.68 (m, 2H); 13C 

NMR (100 MHz, CDCl3) δ 29.9, 31.9, 46.9, 60.3, 111.9, 112.5, 112.7, 114.7, 114.9, 115.7, 

121.7, 123.4, 126.0, 126.3, 126.4, 127.6, 127.7, 128.6, 128.7, 132.1, 132.2, 132.3, 134.4, 

134.5, 134.8, 139.1, 147.6, 160.8, 163.3, 206.9 (extra peaks due to 13C-19F coupling); HRMS 

(EI) calcd for C28H22FN3OS 467.14675, found 467.14783. 

Compound 12a{22}  

This compound was obtained as a yellow oil in a 42% yield: 

1H NMR (400 MHz, CDCl3) δ 1.25 (s, 1H), 2.65 (t, J = 6.2 Hz, 2H), 3.78 (br s, 5H), 3.84 (s, 

3H), 6.28 (s, 1H), 6.65 (d, J = 8.8 Hz, 2H), 6.80 (s, 1H), 6.84 (dt, J = 2.4, 8.3 Hz, 2H), 7.04 

(d, J = 8.6 Hz, 1H), 7.05-7.12 (m, 3H), 7.19-7.23 (m, 4H), 7.47 (s, 1H), 7.83 (s, 1H); 13C 
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NMR (100 MHz, CDCl3) δ 24.1, 55.6, 56.1, 61.4, 61.5, 82.8, 85.3, 101.6, 111.8 112.3, 112.6, 

113.3, 115.7, 117.6, 120.8, 122.8, 124.2, 124.3, 125.2, 126.1, 126.3, 125.5, 131.9, 132.4, 

133.9, 134.3, 139.7, 144.8, 147.3, 154.2, 158.9;  HRMS (EI) calcd for C33H28N2O3S 

532.18210, found 532.18323. 

3.6.11. General procedure for the microwave-assisted Suzuki-Miyaura coupling to 

prepare 1,2-dihydroisoquinolines 12b{1-51}. 

(HO)2B
R10

11
5 mol % Pd(PPh3)4

Cs2CO3, DMF/EtOH
120 oC, MW, 20 min

N

R1

R5

R3

R2

8{49-51}

N
R7

R8

R6

N

R1

R4
O

R5

R3

R2

8{31-48}

N

R1

R3

R2

12b{50-53}

N
R7

R8

R6

N

R1

R4
O

R3

R2

12b{1-49}

R10

R10

N

R1

R4

O
R5

R2
R10

or

(HO)2B
R10

11
5 mol % Pd(PPh3)4

(7)

(8)

Cs2CO3, DMF/EtOH
120 oC, MW, 20 min

!

To a 2 mL microwave vial was added the appropriate 1,2-dihydroisoquinoline 8 (0.8-

1.2 mmol), boronic acid 11 (1.2 equiv), 1M Cs2CO3 (0.2-0.4 mL) and 5 mol % Pd(PPh3)4 in 

1:1 DMF/ethanol. The solution was vigorous stirred for 5 min at room temperature, flushed 

with argon, and then heated to 120oC under microwave irradiation for 20 min. Upon cooling 

to room temperature, the resulting reaction mixture was diluted with satd aq Na2SO4 and 

extracted with EtOAc. The combined organic layers were dried over MgSO4, concentrated, 
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and purified by either column chromatography or preparative HPLC to afford the 

corresponding product. 

3.6.12. Data for selected 1,2-dihydroisoquinolines prepared via Suzuki-Miyaura 

coupling 

Compound 12b{8} 

 This compound was obtained as a yellow oil in an 89% yield: 1H NMR 

(400 MHz, CDCl3) δ 2.17 (s, 3H), 2.58 (dd, J = 4.6, 17.3 Hz, 1H), 3.30 (dd, J = 8.9, 17.3 Hz, 

1H), 3.75 (s, 3H), 5.59 (dd, J = 4.6, 8.9 Hz, 1H), 6.79-6.82 (m, 3H), 6.96 (td, J = 2.4, 8.6 Hz, 

1H), 7.06 (s, 1H), 7.10 (d, J = 7.8 Hz, 1H), 7.19-7.27 (m, 4H), 7.33 (d, J = 8.6 Hz, 2H), 8.81 

(s, 2H), 9.10 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 31.8, 47.0, 55.4, 60.2, 112.4, 112.5, 

112.7, 113.1, 114.1, 114.7, 119.6, 122.7, 126.5, 126.6, 127.5, 127.7, 127.8, 129.9, 133.9, 

134.6, 134.7, 138.7, 139.3, 147.9, 154.5, 157.0, 160.1, 160.9, 163.4, 206.8 (extra peaks due 

to the 13C-19F coupling);  HRMS (EI) calcd for C29H24FN3O2 465.18525, found 465.18637. 

Compound 12b{10} 

This compound was obtained as a yellow oil in a 48% yield: 1H 

NMR (400 MHz, CDCl3) δ 1.38 (t, J = 7.1 Hz, 3H), 2.17 (s, 3H), 2.59 (dd, J = 4.7, 17.3 Hz, 
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1H), 3.28 (dd, J = 8.8, 17.3 Hz, 1H), 3.75 (s, 3H), 4.38 (q, J = 7.1 Hz, 2H), 5.59 (dd, J = 4.9, 

8.5 Hz, 1H), 6.78-6.83 (m, 3H), 6.95 (t, J = 7.3 Hz, 1H), 7.05 (s, 1H), 7.09 (d, J = 7.7 Hz, 

1H), 7.10-7.29 (m, 6H), 7.35 (d, J = 8.6 Hz, 2H), 7.90 (t, J = 7.9 Hz, 1H); 13C NMR (100 

MHz, CDCl3) δ 14.5, 31.9, 47.1, 55.4, 60.2, 61.4, 112.5, 112.7, 112.8, 114.0, 114.6, 114.7, 

114.8, 114.9,116.8, 116.9, 117.6, 119.6, 121.9, 122.4, 123.9, 126.5, 126.6, 127.7, 127.8, 

127.9, 129.9, 132.1, 132.6, 134.6, 134.7, 147.2, 147.3, 147.7, 160.0, 160.9, 161.2, 163.4, 

163.8, 164.5, 164.6, 206.9 (extra peaks due to the 13C-19F coupling); HRMS (EI) calcd for 

C34H29F2NO4 553.20645, found 553.20818. 

Compound 12b{12} 

This compound was obtained as a yellow oil in a 100% yield: 1H 

NMR (400 MHz, CDCl3) δ 2.16 (s, 3H), 2.57 (dd, J = 4.7, 16.7 Hz, 1H), 3.27 (dd, J = 8.9, 

16.8 Hz, 1H), 3.73 (s, 6H), 3.85 (s, 3H), 3.87 (s, 6H), 5.58 (dd, J = 4.8, 8.9 Hz, 1H), 6.36 (s, 

1H), 6.64 (s, 2H), 6.71 (d, J = 2.1 Hz, 2H), 6.80 (s, 1H), 7.06 (d, J = 7.4 Hz, 1H), 7.12-7.30 

(m, 7H); 13C NMR (100 MHz, CDCl3) δ 32.1, 47.5, 55.5, 56.3, 60.9, 61.1, 100.6, 104.2, 

105.5, 113.1, 113.2, 122.4, 124.9, 125.5, 127.3, 127.5, 127.7, 131.6, 132.6, 135.1, 136.9, 

139.9, 140.4, 146.7, 153.5, 160.9, 207.4; HRMS (EI) calcd for C35H35NO6 565.24643, found 

565.24819. 
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Compound 12b{20} 

This compound was obtained as a yellow oil in a 66 % yield: 1H 

NMR (400 MHz, CDCl3) δ 2.79 (dd, J = 4.0, 15.4 Hz, 1H), 3.60 (s, 6H), 3.77 (dd, J = 10.0, 

15.4 Hz, 1H), 5.76 (dd, J = 4.0, 9.8 Hz, 1H), 6.29 (s, 1H), 6.46 (s, 1H), 6.57 (s, 2H), 6.85 (s, 

1H), 7.11-7.19 (m, 5H), 7.25-7.32 (m, 4H), 7.50 (d, J = 8.1 Hz, 2H), 7.55 (s, 1H), 7.79 (d, J = 

7.9 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 42.6, 55.4, 61.8, 100.8, 105.5, 112.7, 113.3, 

118.6, 122.6, 125.0, 125.4, 126.8, 127.4, 127.6, 127.9, 128.0, 131.4, 131.7, 132.4, 133.5, 

139.6, 140.3, 144.4, 147.2, 147.4, 153.2, 160.8, 169.3, 187.6; HRMS (EI) calcd for 

C36H30N2O5 570.21546, found 570.121675. 

Compound 12b{22} 

This compound was obtained as a colorless solid in an 86% yield: mp 

188-190 °C; 1H NMR (400 MHz, CDCl3) δ 2.14 (s, 3H), 2.53 (dd, J = 4.6, 16.8 Hz, 1H), 

3.31 (dd, J = 9.3, 16.8 Hz, 1H), 5.56 (dd, J = 4.6, 9.2 Hz, 1H), 6.83 (s, 1H), 7.06 (d, J = 7.4 

Hz, 1H), 7.16 (td, J = 1.9, 7.2 Hz, 1H), 7.17-7.28 (m, 7H), 7.35 (d, J = 8.7 Hz, 2H), 8.83 (s, 

2H), 9.10 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 32.1, 47.3, 60.9, 112.9, 122.7, 123.5, 
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125.0, 125.4, 126.1, 126.2, 127.4, 127.6, 127.9, 131.4, 132.5, 134.0, 135.5, 139.4, 148.3, 

154.5, 157.0, 207.4; HRMS (EI) calcd for C26H21N3OS 423.13965, found 423.14054 

Compound 12b{26} 

This compound was obtained as a yellow solid in a 52% yield: mp 175-

177 °C; 1H NMR (400 MHz, CDCl3) δ 2.12 (s, 3H), 2.54 (dd, J = 4.9, 16.4 Hz, 1H), 3.26 

(dd, J = 9.1, 16.5 Hz, 1H), 5.50 (dd, J = 4.9, 8.9, 1H), 6.78 (s, 1H), 6.99 (t, J = 3.8 Hz, 1H), 

7.05 (t, J = 8.1 Hz, 3H), 7.13-7.24 (m, 8H), 7.36 (d, J = 8.6 Hz, 2H); 13C NMR (100 MHz, 

CDCl3) δ 32.2, 47.5, 61.1, 112.1, 115.5, 117.6, 122.4, 122.5, 123.5, 124.1, 124.8, 125.5, 

125.9, 126.5, 127.2, 127.8, 128.6, 131.6, 132.3, 135.9, 139.6, 144.5, 146.8, 207.6;  HRMS 

(EI) calcd for C26H21NOS2 427.10645, found 427.10748. 

Compound 12b{29} 

This compound was obtained as a colorless oil in an 84% yield: 1H 

NMR (400 MHz, CDCl3) δ 0.87 (dt, J = 2.9, 7.2 Hz, 2H), 1.10 (t, J = 4.2 Hz, 2H), 1.87 (m, 

1H), 2.58 (dd, J = 4.2, 16.2 Hz, 1H), 3.42 (dd, J = 9.7, 16.2 Hz, 1H), 5.58 (dd, J = 4.2, 9.7 

Hz, 1H), 6.82 (s, 1H), 7.06 (d, J = 7.3 Hz, 1H), 7.15 (td, J = 1.9, 7.0 Hz, 1H), 7.13-7.27 (m, 

7H), 7.32 (d, J = 8.6 Hz, 2H), 8.81 (s, 2H), 9.09 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 

11.5, 11.7, 22.4, 46.8, 61.2, 112.9, 122.6, 123.6, 124.9, 125.4, 126.1, 127.3, 127.4, 127.5, 
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127.9, 131.5, 132.6, 134.0, 135.5, 139.5, 148.3, 154.4, 156.9, 209.6;  HRMS (EI) calcd for 

C28H23N3OS 449.15532, found 449.15623. 

Compound 12b{33} 

This compound was obtained as a yellow oil in a 58% yield: 1H 

NMR (400 MHz, CDCl3) δ 2.77 (dd, J = 4.5, 15.2 Hz, 1H), 3.78 (dd, J = 10.0, 15.2 Hz, 1H), 

4.03 (s, 3H), 5.66 (dd, J = 4.5, 10.0 Hz, 1H), 6.46 (dd, J = 1.7, 3.6 Hz, 1H), 6.83 (s, 1H), 6.86 

(dd, J = 2.5, 8.6 Hz, 1H), 6.94-7.00 (m, 2H), 7.09-7.17 (m, 5H), 7.24-7.28 (m, 3H), 7.52 (d, J 

= 1.0 Hz, 1H), 8.59 (s, 2H); 13C NMR (100 MHz, CDCl3) δ 42.3, 55.2, 61.9, 111.6, 112.5, 

112.7, 114.8, 115.0, 118.6, 122.7, 123.6, 125.8, 126.2, 126.4, 126.5, 127.0, 127.8, 127.9, 

128.0, 128.4, 133.9, 134.0, 135.3, 139.0, 147.2, 147.3, 153.1, 157.0, 160.9, 163.3, 164.9, 

187.4, 112.0, 122.4, 122.5, 123.5, 125.0, 126.2, 127.4, 127.7, 131.1, 131.4, 132.5, 139.5, 

143.0, 148.2, 148.9, 164.8, 187.4 (extra peaks due to the 13C-19F coupling); HRMS (EI) calcd 

for C30H22FN3O3S 523.13658, found 523.13767. 

Compound 12b{37} 

This compound was obtained as a yellow solid in a 69% yield: 

mp 91-93 °C; 1H NMR (400 MHz, CDCl3) δ 2.14 (s, 3H), 2.56 (dd, J = 4.7, 16.7 Hz, 1H), 
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3.29 (dd, J = 9.1, 16.6 Hz, 1H), 3.65 (s, 3H), 3.83 (s, 3H), 5.48 (dd, J = 4.7, 8.9 Hz, 1H), 6.63 

(d, J = 8.9 Hz, 2H), 6.76 (s, 1H), 6.93 (d, J = 8.5 Hz, 2H), 7.02 (d, J = 8.9 Hz, 2H), 7.20-7.32 

(m, 5H), 7.43-7.48 (m, 3H), 7.53 (d, J = 7.2 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 32.1, 

47.9, 55.5, 61.9, 111.4, 114.2, 114.4, 123.7, 124.3, 125.0, 125.8, 127.5, 127.9, 128.2, 128.6, 

130.5, 132.4, 133.5, 137.7, 139.5, 140.9, 141.1, 155.4, 159.2, 207.7; HRMS (EI) calcd for 

C32H29NO3 477.23038, found 477.23188. 

Compound 12b{42} 

This compound was obtained as a yellow oil in a 61 % yield: 1H 

NMR (400 MHz, CDCl3) δ 0.90 (d, J = 7.8 Hz, 2H), 1.1 (d, J = 3.9 Hz, 2H), 1.88 (br s, 1H), 

2.75 (dd, J = 4.2, 16.7 Hz, 1H), 3.43 (dd, J = 8.8, 16.6 Hz, 1H), 3.72 (s, 6H), 3.81 (s, 3H), 

5.75 (dd, J = 4.6, 8.4 Hz, 1H), 6.36 (s, 1H), 6.66 (s, 2H), 6.87 (s, 1H), 7.13 (d, J = 8.1 Hz, 

2H), 7.32-7.35 (m, 2H), 7.39 (d, J = 7.8 Hz, 1H), 7.50 (d, J = 7.8 Hz, 1H), 7.78 (d, J = 8.2 

Hz, 2H), 7.82 (d, J = 8.2 Hz, 1H), 8.55 (s, 1H), 8.81 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 

11.6, 11.8, 22.2, 46.8, 51.9, 55.5, 60.2, 100.7, 105.6, 113.6, 115.5, 120.9, 123.3, 123.7, 123.9, 

124.1, 125.8, 126.6, 130.7, 131.3, 133.9, 134.2, 136.2, 136.9, 139.2, 140.4, 148.2, 148.6, 

151.0, 161.1, 167.1, 208.9;  HRMS (EI) calcd for C37H32N2O5 560.23111, found 560.23277. 
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Compound 12b{52} 

This compound was obtained as a yellow solid in a 42% yield: 

mp 136-138 °C; 1H NMR (400 MHz, acetone-d6) δ 1.39 (t, J = 6.0 Hz, 3H), 4.39 (m, 2H), 

6.36 (s, 1H), 6.72 (d, J = 9.4 Hz, 2H), 6.95 (d, J = 8.1 Hz, 1H), 7.02 (t, J = 8.5 Hz, 1H), 7.16-

7.47 (m, 12H), 8.40 (s, 1H), 8.47 (s, 1H); 13C NMR (100 MHz, acetone-d6) δ 15.1, 61.8, 

62.2, 103.7, 113.8, 113.9, 114.3, 114.5, 114.6, 115.4, 115.7, 115.8, 115.9, 118.2, 118.3, 

118.9, 121.8, 123.0, 123.1, 123.2, 124.7, 125.7, 126.2, 127.2, 127.5, 127.7, 127.8, 127.9, 

128.0, 128.1, 129.1, 130.0, 130.1, 132.8, 133.2, 133.3, 133.8, 135.7, 135.8, 137.2, 137.3, 

140.2, 140.9, 148.2, 148.3, 149.4, 161.9, 162.3, 164.4, 164.8, 164.9, 165.0  112.2, 115.5, 

117.6, 114.0, 116.6, 119.7, 121.9, 127.2, 128.3, 128.8, 128.9, 130.6, 130.8, 134.1, 136.8, 

137.8, 140.6, 135.9, 139.6, 144.5, 207.6 (extra peaks due to the 13C-19F coupling);  HRMS 

(EI) calcd for C37H25F2N3O2S 613.16355, found 613.16556. 
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4.1. ABSTRACT 

A microwave-assisted, one-pot, three-component coupling reaction for the synthesis of 

indoles has been developed.  The reaction is carried out in two steps under standard 

Sonogashira coupling conditions from an N-substituted/N,N-disubstituted 2-iodoaniline and a 

terminal alkyne, followed by the addition of acetonitrile and an aryl iodide. A variety of 

polysubstituted indoles have been prepared in moderate to excellent yields using the present 

method.  

 

4.2. INTRODUCTION 

The indole nucleus is a ubiquitous heterocyclic structure found in numerous natural and 

synthetic compounds with a wide variety of biological activities and considerable 

pharmaceutical importance.1  The synthesis of indoles, therefore, has attracted enormous 
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attention from synthetic organic chemists and a substantial number of methods for the 

preparation of indoles have been developed.2   Among the methods developed so far, 

palladium-catalyzed indole syntheses have received extraordinary attention due to the 

relatively mild reaction conditions employed in these processes and the fact that they usually 

tolerate a wide variety of functional groups, thus avoiding protecting group chemistry.  High 

regioselectivities and chemical yields are also generally achieved.2b-d,3 Flynn previously 

demonstrated a one-pot, two-step synthesis of indoles by consecutive Sonogashira4 and 

Cacchi5 reactions (Scheme 1). 6  However, only one example of this process was reported.  

Scheme 1. One-pot synthesis of indoles by Flynn 

NHAc

I
1. 2 equiv MeMgCl

      cat. PdCl2(PPh3)2
+

2. 80 - 90 oC,
N
HMeO

MeO OMe

OMe

OMe
MeO

OMe I

OMe

OMe

OMe

85%  

Lu and co-workers later on reported a one-pot, three-component synthesis of indoles by 

the same Sonogashira/Cacchi process in which they replaced the aryl iodide in the Cacchi 

cyclization with an aryl bromide (Scheme 2).7 However, a significant substituent effect in the 

three starting components was observed on the rate of reaction.  Sluggish reactions were 

observed, especially when an electron-withdrawing group was present at the para-position of 

either the iodide or the amide moiety of the starting material as in 2’-iodo-trifluoroacetanilide.   
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Scheme 2. One-pot synthesis of indoles by Lu 
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It is noteworthy that microwave technology has recently attracted more and more 

attention from synthetic organic chemists due to the many advantages microwave irradiation 

affords over conventional heating in chemical transformations, particularly the enormous 

acceleration of the reaction rate, significant energy savings, as well as high chemical yields 

and cleaner reactions.8  Our group has been interested in developing new methodologies for 

the synthesis of functionalized indoles for almost two decades.  We have previously 

developed a palladium-catalyzed heteroannulation reaction of internal alkynes and 2-

iodoanilines known as the Larock indole synthesis;9 and the electrophilic cyclization of N,N-

dialkyl-2-(1-alkynyl)anilines induced by halide,10 sulfur or selenium electrophiles to generate 

indoles.11  As a continuation of our long-term interest in indole synthesis, we hereby report a 

microwave-assisted, one-pot, three-component reaction to synthesize 2,3-disubstituted 

indoles under Sonogashira coupling conditions.  

 

 4.3. RESULTS AND DISCUSSION 

Our group previously developed synthetic protocols for the preparation of 3-iodo-,10 3-

sulfenyl-, and 3-selenylindoles11 by the electrophilic cyclization of N,N-dialkyl-2-(1-

alkynyl)anilines by iodine or sulfenyl/selenyl chlorides.  While preparing the starting N,N-
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dialkyl-2-(1-alkynyl)anilines for this process, we discovered an interesting solvent effect 

during the Sonogashira coupling process.  When the coupling of N,N-dialkyl-2-iodoanilines 

and terminal alkynes was carried out in Et3N, the corresponding internal alkynes were 

generally obtained as a single product in high chemical yield.  On the other hand, in the 

presence of a polar solvent, such as CH3CN or DMF, with only 10 equiv of Et3N present, a 

significant amount of an indole was obtained, alongside the desired N,N-dialkyl-2-(1-

alkynyl)anilines.  The indole is apparently generated by the palladium-catalyzed cyclization 

of the Sonogashira coupling product and any unreacted N,N-dialkyl-2-iodoaniline.   

Cacchi has previously developed a similar cyclization between 2-(1-

alkynyl)trifluoroacetanilides and aryl iodides in the presence of inorganic bases, such as 

K2CO3 or Cs2CO3.5a,d,e,g  In the Cacchi reaction, the reaction outcome was influenced by both 

the base and the nature of the nitrogen nucleophile.  Employing Et3N as the base gave only 

low yields.  On the other hand, a trifluoroacetamido group plays a key role in this cyclization.  

When a free amino or acetamido group is used, no cyclization occurs and only the starting 

alkynes are recovered.  In our case, due to the high nucleophilicity of the N,N-dialkylamino 

moiety, intramolecular cyclization takes place more readily.   

In our view, this one-pot cyclization approach provides an ideal protocol for parallel 

library synthesis.  Thus, a one-pot, three-component coupling reaction was carried out using 

N,N-dimethyl-2-iodoaniline, phenylacetylene and ethyl 4-iodobenzoate (Table 1, entry 1).  

The Sonogashira coupling took place smoothly in Et3N at room temperature, while efficient 

further cyclization required a higher reaction temperature (60 °C) and the addition of a polar 

solvent, such as CH3CN.  When a more bulky alkyne, such as 3,5-dimethoxyphenylacetylene, 
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and an electron-rich aryl iodide, such as 2-iodothiophene, were employed in this coupling, a 

considerably longer reaction time was needed for complete cyclization (Table 1, entry 2).  

Table 1.  One-pot synthesis of indoles under Sonogashira coupling conditionsa  

N
Me Me

I
R2+

3 mol % PdCl2(PPh3)2
2 mol % CuI, Et3N

N
Me Me

R2
ArI

CH3CN, 60 °C N
Me

R2

Ar

rt, 5 h

R1 R1

R1

1 2 3  

entry 1 R1 R2 Ar 
time (h) 

3 % yieldb 
Step 1 Step 2 

1 1a H C6H5 
CO2Et 

5 4 3a 82 

2 1b Br 
MeO OMe 

S
 

5 12 3j 83 

a Representative procedure: Step 1)  2-Iodoaniline 1 (0.500 mmol), terminal alkyne 2 (0.525 mmol), 

PdCl2(PPh3)2 (0.015 mmol), CuI (0.010 mmol), and 3 mL of  Et3N were mixed in a sealed 4-dram vial.  The 

reaction was stirred at room temperature for the indicated time.  Step 2) Aryl iodide (0.550 mmol) and 3 mL of 

CH3CN were added to the reaction mixture of Step 1.  The resulting mixture was stirred at 60 °C for the 

indicated time.   b Isolated yields of indole product after column chromatography.  

  

In order to enhance the reaction rate of this one-pot coupling/cyclization process for the 

purpose of developing a high-throughput parallel synthetic protocol, microwave technology 

has been employed.  To our delight, the entire process was dramatically accelerated by 
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microwave irradiation.  Both of the reactions were completed in less than an hour in yields 

comparable to those obtained previously.   

Encouraged by these results, we next explored the scope of this one-pot, two-step 

approach to substituted indoles.  Both the Sonogashira coupling and cyclization take place 

smoothly when electron-rich aryl acetylenes are used (Table 2; entries 2, 4 and 6).  A longer 

reaction time is necessary for complete conversion for both the Sonogashira and cyclization 

steps, when an electron-deficient aryl acetylene is employed (Table 2, entry 3).  Smooth 

couplings were also observed when aliphatic acetylenes are employed (Table 2; entries 5, 7 

and 8).   When 2-methoxyphenylacetylene is used, the steric bulkiness induced by the 2-

methoxy group requires a longer reaction time for cyclization (Table 2, entry 9).  A free 

hydroxyl group in the alkyne is not well accommodated by this coupling process as only a 

33% yield of the desired indole product was obtained (Table 2, entry 16).   

No significant electronic effect has been observed in either the 2-iodoanilines or the 

aryl iodides employed.  Both electron-withdrawing and electron-releasing groups are readily 

accommodated in these two components.  An extra equivalent of aryl iodide was employed 

in the coupling processes utilizing N,N-dimethyl-4-bromo-2-iodoaniline in order to suppress 

any interference by the bromo moiety in the cyclization step (Table 2, entries 10-13).  Both 

benzyl bromide and allyl acetate have been examined in this coupling process in place of the 

aryl iodide.  However, none of the desired cyclization product was obtained in either case.  

The two alkyl groups present on the aniline nitrogen play a crucial role in the success of the 

overall process.  Only Sonogashira coupling product was obtained when either 2-iodoaniline 
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or N-methyl-2-iodoaniline were employed, which is in good agreement with our previous 

experience with such Sonogashira processes.10,11   

Besides N,N-dialkyl-2-iodoanilines, 2’-iodo-trifluoroacetanilides can also be employed 

in the current microwave-irradiated process (Table 2, entries 18-24).  As described earlier 

using conventional heating, the addition of an inorganic base is necessary for the success of 

this cyclization.  In addition, a slightly higher reaction temperature is needed for efficient 

cyclization.   

Table 2.  Microwave-assisted, one-pot synthesis of indoles under Sonogashira coupling 

conditionsa  

N
R1 R2

I R4+

3 mol % PdCl2(PPh3)2
2 mol % CuI, Et3N 
MW (300 W), 60 °C

N
R1 R2

R4
ArI

CH3CN, MW (300 W), 90 °C N
R1

R4

Ar

R3 R3
R3

1 2 3  

entry 1 R1 R2 R3 R4 Ar 

time (min) 

3 
% 

yieldb Step 

1 

Step 

2 

1 1a Me Me H C6H5 
CO2Et 

20 30 3a 86 

2 1a Me Me H 

OMe CO2Et 

20 20 3b 86 

3 1a Me Me H 

CN  CO2Et 

30 50 3c 77 

4 1a Me Me H 
S  CO2Et 

20 30 3d 78 
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Table 2 continued. 

5 1a Me Me H 
 

NO2 

20 30 3e 91 

6 1a Me Me H 
OMe 

C6H5 20 30 3f 91 

7 1a Me Me H 
CN NO2 

20 30 3g 72 

8 1a Me Me H 
CN CO2Me 

20 30 3h 63 

9 1a Me Me H OMe

 
Cl  

20 50 3i 87 

10c 1b Me Me 4-Br 
MeO OMe

 
S
 

20 30 3j 74 

11c 1b Me Me 4-Br 
MeO OMe

 S  
20 30 3k 76 

12c 1b Me Me 4-Br 
S  

S
 

20 30 3l 85 

13c 1b Me Me 4-Br C6H5 S
 

20 30 3m 79 

14 1c Me Me 4-Me C6H5 
CO2Et 

30 30 3n 68 

15 1c Me Me 4-Me 

OMe Cl  

30 30 3o 94 

16 1c Me Me 4-Me 
OH 

OMe
OMe

 

30 30 3p 33 
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Table 2 continued. 

17 1d Me Me 
4-

CO2Me OMe S  
30 30 3q 70 

18 1e H 
CF3O  H C6H5 

CO2Et 
30 30 d 3r 93 

19 1e H CF3O  H 
OMe 

OMe 

30 30 d 3s 82 

20 1f H 
CF3O  4-Me 

OMe NO2 
30 30 d 3t 88 

21 1f H CF3O  4-Me 

CN  

C6H5 30 30 d 3u 66 

22 1f H CF3O  4-Me 
S  

Cl  

30 30 d 3v 67 

23 1g H CF3O  
4-

CO2Me 
C6H5 

OMe 
30 30 d 3w 76 

24 1g H CF3O  
4-

CO2Me 
OMe CO2Et 

30 30 d 3x 60 

a Representative procedure: Step 1) 2-Iodoaniline 1 (0.500 mmol), terminal alkyne 2 (0.525 mmol), 

PdCl2(PPh3)2 (0.015 mmol), CuI (0.010 mmol), and 3 mL of  Et3N were mixed in a sealed 20 mL microwave 

vial.  The reaction was stirred at 60 °C under microwave (300 W) irradiation for the indicated time.  Step 2) 

Aryl iodide (0.550 mmol) and 3 mL of CH3CN were added to the reaction mixture of Step 1.  The resulting 

mixture was stirred at 90 °C under microwave irradiation (300 W) for the indicated time.   b Isolated yields of 

indole product after column chromatography. c An extra equivalent of aryl iodide was employed in Step 2). d 

Step 2) was carried out at 100 °C with the addition of Cs2CO3 (3 equiv). 

 



www.manaraa.com

 

 

109 

As mentioned above, this overall process involves two steps (Scheme 3).  The first step 

is a Sonogashira coupling to generate the N,N-dialkyl-2-(1-alkynyl)aniline A.  The aryl 

iodide is added upon completion of the Sonogashira coupling.  Oxidative addition of the aryl 

iodide to Pd(0) affords an electrophilic ArPdI species, which activates the alkyne triple bond 

of A by coordination to form a π-palladium complex B, which subsequently undergoes 

intramolecular trans-aminopalladation by a 5-endo-dig cyclization, affording the indole-

containing Pd(II) intermediate C.  The 2,3-disubstituted indole is generated after reductive 

elimination.   

Scheme 3.  A proposed mechanism for the one-pot, two-step indole synthesis. 

N
Me Me

I R+

N
Me Me

R

ArI

N
Me

R

PdAr

Pd(0)/Cu(I)

A

ArPdI

N R

Me Me

ArPdI

- MeI

Pd(0)

N
Me

R

Ar

CB  

 

4.4. CONCLUSIONS 

In summary, an efficient, microwave-assisted, one-pot, three-component reaction for 

the synthesis of polysubstituted indoles has been developed.  A variety of functionalities, 

such as nitro, ester, hydroxyl, cyano, and halide groups are tolerated in this 
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coupling/cyclization process.  The desired indoles have been obtained in moderate to 

excellent overall yields.  This protocol provides an ideal synthetic approach for the parallel 

synthesis of an indole library.  Further examination of the current reaction conditions for a 

one-pot, four-component synthesis of indoles, as well as other biologically interesting 

heterocycles, is underway in our laboratory.   
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4.6. EXPERIMENTAL 

4.6.1.  General remarks 

All reactions were carried out in sealed 20 mL oven-dried Biotage microwave vials.  

All commercially obtained chemicals were used as received without further purification 

unless otherwise indicated.  The 1H NMR and 13C NMR spectra were recorded at 400 MHz 

and 100 MHz respectively, using CDCl3, acetone-d6 or DMSO-d6 as solvents.  The chemical 

shifts of the 1H NMR and 13C NMR spectra are reported relative to the residual signal of 

CDCl3 (δ 7.26 ppm for the 1H NMR and δ 77.23 ppm for the 13C NMR), acetone-d6 (2.05 

ppm for the 1H NMR and δ 29.92 ppm for the 13C NMR) or DMSO-d6 (2.50 ppm for the 1H 
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NMR and δ 39.51 ppm for the 13C NMR).  The high resolution mass spectra were recorded 

on a double focusing magnetic sector mass spectrometer using EI at a voltage of 70 eV.  The 

melting points are uncorrected.   

4.6.2.  General procedure for preparation of the N,N-dimethyl-2-iodoanilines 

These compounds were prepared according to a procedure reported by Cadogan.12  To a 

solution of the corresponding 2-iodoaniline (2.0 mmol) and iodomethane (0.85 g, 6.0 mmol) 

in DMF (10 mL) was added K2CO3 (0.55 g, 4.0 mmol).  The resulting mixture was stirred at 

room temperature for 48 h.  Water (10 mL) was added to the reaction mixture and the 

resulting solution was extracted with diethyl ether (3 × 10 mL).  The organic layers were 

combined and washed with water to remove any remaining DMF and dried over anhydrous 

MgSO4.  The solvent was removed under vaccum and the residue was purified by flash 

column chromatography on silica gel using ethyl acetate/hexanes as the eluent.  

N,N-Dimethyl-2-iodoaniline (1a)  

NMe2

I This compound was obtained as a yellow oil in an 81% yield: 1H NMR (400 MHz, 

CDCl3) δ 2.76 (s, 6H), 6.77 (dt, J = 7.6, 1.5 Hz, 1H), 7.09 (dd, J = 7.8, 1.5 Hz, 1H), 7.31 (dt, 

J = 7.6, 1.5 Hz, 1H), 7.84 (dd, J = 7.8, 1.5 Hz, 1H).  The 1H NMR spectral data are in good 

agreement with the literature data.10a  
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N,N-Dimethyl-4-bromo-2-iodoaniline (1b)  

NMe2

IBr This compound was obtained as a light red oil in an 81% yield:  1H NMR (400 

MHz, CDCl3) δ 2.72 (s, 6H), 6.92 (d, J = 8.5 Hz, 1H), 7.40 (dd, J = 8.5, 2.4 Hz, 1H), 7.94 (d, 

J = 2.4 Hz, 1H).  The 1H NMR spectral data are in good agreement with the literature data.11  

N,N,4-Trimethyl-2-iodoaniline (1c)  

NMe2

IH3C This product was obtained as an orange liquid in a 91% yield: 1H NMR (400 

MHz, CDCl3) δ 2.26 (s, 3H), 2.72 (s, 6H), 6.99 (d, J = 8.1 Hz, 1H), 7.12 (d, J = 8.1 Hz, 1H), 

7.68 (s, 1H).  The 1H NMR spectral data are in good agreement with the literature.10b 

4.6.3.  Preparation of methyl 4-dimethylamino-3-iodobenzoate (1d) 

NMe2

IMeO2C This compound was prepared according to a procedure reported by 

Larock.13  The product was obtained as a colorless oil in a 44% yield:  1H NMR (400 MHz, 

CDCl3) δ 2.82 (s, 6H), 3.85 (s, 3H), 6.98 (d, J = 8.4 Hz, 1H), 7.92 (dd, J = 8.4, 2.0 Hz, 1H), 

8.46 (d, J = 2.0 Hz, 1H).  The 1H NMR spectral data are in good agreement with the literature 

data.13  

4.6.4.  General procedure for preparation of the N-trifluoroacetyl-2-iodoanilines 

These compounds were prepared according to a procedure reported by Srinivasan.14  To 

a solution of the corresponding 2-iodoaniline (4.3 mmol) and triethylamine (0.63 mL, 4.55 

mmol) in THF (11 mL) at -15 ºC was slowly added trifluoroacetic anhydride (0.6 mL, 4.3 

mmol) in 6.5 mL of THF.  The resulting mixture was stirred for 1 h and then allowed to 
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warm to room temperature and stirred for 16 h.  The reaction mixture was then poured into a 

separatory funnel containing water (115 mL) and extracted with ethyl acetate (3 × 50 mL).  

The organic layers were dried over anhydrous MgSO4.  The solvent was removed under 

vacuum and the residue was purified by flash column chromatography on silica gel using 

ethyl acetate/hexanes as the eluent. 

N-Trifluoroacetyl-2-iodoaniline (1e)  

I

NHCOCF3

This product was obtained as a white solid in a 96% yield:  mp 105-107 °C; 1H 

NMR (400 MHz, CDCl3) δ 6.98 (t, J = 7.0 Hz, 1H), 7.42 (t, J = 7.4 Hz, 1H), 7.84 (d, J = 7.9 

Hz, 1H), 8.21 (d, J = 8.2 Hz, 1H), 8.29 (s, 1H).  The 1H NMR spectral data are in good 

agreement with the literature data.15 

N-Trifluoroacetyl-2-iodo-4-methylaniline (1f)  

I

NHCOCF3

H3C This product was obtained as a pink solid in a 95% yield:  mp 84-85 °C; 

1H NMR (400 MHz, CDCl3) δ 2.32 (s, 3H), 7.19 (d, J = 8.1 Hz , 1H), 7.66 (s, 1H), 8.01 (d, J 

= 8.3 Hz , 1H), 8.21 (s, 1H).  

Methyl 4-(N-trifluoroacetamino)-3-iodobenzoate (1g)  

I

NHCOCF3

MeO2C This product was obtained as a white solid in an 88% yield:  mp 87-

88 °C; 1H NMR (400 MHz, CDCl3) δ 3.92 (s, 3H), 8.06 (dd, J = 1.9, 8.6 Hz, 1H), 8.34 (d, J = 

8.6 Hz, 1H), 8.50 (m, 2H).  The 1H NMR spectral data are in good agreement with the 

literature data.16 
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4.6.5. General procedure for the microwave-assisted, one-pot synthesis of 1-

methylindoles 

The 2-iodoaniline 1 (0.500 mmol), a terminal alkyne 2 (0.525 mmol), PdCl2(PPh3)2 

(0.015 mmol), CuI (0.010 mmol), and 3 mL of  Et3N were mixed in a sealed 20 mL 

microwave vial.  The reaction mixture was stirred at 60 °C under microwave (300 W) 

irradiation for 20 min or until disappearance of the starting material as monitored by thin 

layer chromatography.  To the reaction mixture was added the aryl iodide (0.550 mmol) and 

3 mL of CH3CN at room temperature.  The resulting mixture was then stirred at 90 °C under 

microwave irradiation for 30 min or until disappearance of the starting material as monitored 

by thin layer chromatography.  The reaction mixture was diluted by 10 mL of diethyl ether 

and washed with brine (10 mL).  The aqueous phase was extracted with diethyl ether (2 × 5 

mL).  The organic layers were combined and dried over anhydrous MgSO4.  The solvent was 

removed under vacuum and the residue was purified by flash column chromatography on 

silica gel using ethyl acetate/hexanes as the eluent.  

Ethyl 3-[1-methyl-2-(thiophen-3-yl)-1H-indol-3-yl]benzoate (3d) 

N
Me

EtO2C

S

  This product was obtained as a yellow oil in a 78% yield:  1H NMR (400 

MHz, CDCl3) δ 1.34 (t, J = 7.1 Hz, 3H), 3.69 (s, 3H), 4.33 (q, J = 7.1 Hz, 2H), 7.00 (dd, J = 

1.2, 4.9 Hz, 1H), 7.17-7.22 (m, 2H), 7.28-7.35 (m, 3H), 7.39 (d, J = 8.2 Hz, 1H), 7.45 (dd, J 

= 6.2, 1.4 Hz, 1H), 7.76 (d, J = 7.9 Hz, 1H), 7.88 (d, J = 7.7 Hz, 1H), 8.08 (s, 1H); 13C NMR 
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(100 MHz, CDCl3) δ 14.5, 31.1, 60.9, 109.8, 114.8, 119.4, 120.6, 122.6, 126.0, 126.3, 126.8, 

126.9, 128.4, 129.6, 130.7, 130.9, 131.76, 133.2, 134.1, 135.8, 137.4, 166.9;  HRMS (EI) 

calcd for C22H19NO2S 361.11370, found 361.11422. 

Ethyl 3-(1,5-dimethyl-2-phenyl-1H-indol-3-yl)benzoate (3n) 

N
Me

Me

EtO2C

 This product was obtained as a yellow oil in a 68% yield:  1H NMR 

(400 MHz, CDCl3) δ 1.33 (t, J = 7.1 Hz, 3H), 2.48 (s, 3H), 3.63 (s, 3H), 4.31 (q, J = 7.1 Hz, 

2H), 7.13 (dd, J = 8.3, 1.1 Hz, 1H), 7.29 (d, J = 8.3 Hz, 4H), 7.36 (m, 3H), 7.40 (dt, J = 7.7, 

1.3 Hz, 1H) 7.56 (s, 1H), 7.84 (dt, J = 7.8, 1.3 Hz, 1H), 8.07 (t, J = 1.3 Hz, 1H); 13C NMR 

(100 MHz, CDCl3) δ 14.5, 21.8, 31.1, 60.9, 109.5, 113.8, 119.0, 124.1, 126.7, 127.1, 128.30, 

128.33, 128.6, 129.9, 130.6, 131.0, 131.2, 131.9, 134.3, 135.9, 138.4, 166.9;  HRMS (EI) 

calcd for C25H23NO2 369.1729, found 369.1732. 

3-(4-Chlorophenyl)-2-(4-methoxyphenyl)-1,5-dimethyl-1H-indole (3o) 

N
Me

Me

Cl

OMe

This product was obtained as a colorless solid in a 94% yield: mp 

165-167 °C; 1H NMR (400 MHz, CDCl3) δ 2.46 (s, 3H), 3.61 (s, 3H), 3.82 (s, 3H), 6.90 (d, J 

= 8.3 Hz, 2H), 7.11 (d, J = 8.2 Hz, 1H), 7.19-7.22 (m, 6H), 7.27 (d, J = 8.3 Hz, 1H), 7.51 (s, 

1H); 13C NMR (100 MHz, CDCl3) δ 21.8, 31.1, 55.5, 109.5, 113.3, 114.2, 118.9, 123.9, 
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124.0, 127.1, 128.5, 129.8, 131.0, 131.1, 132.4, 134.3, 135.9, 138.1, 159.7;  HRMS (EI) 

calcd for C23H20ClNO 361.1233, found 361.1241. 

2-([3-(3,4-Dimethoxyphenyl)]-1,5-dimethyl-1H-indol-2-yl)ethanol (3p) 

N
Me

Me

OH

MeO OMe

 This product was obtained as a light brown oil in a 33% yield: 1H 

NMR (400 MHz, CDCl3) δ 1.66 (br s, 1H), 2.42 (s, 3H), 3.11 (t, J = 6.8 Hz, 2H), 3.74 (s, 3H), 

3.81 (t, J = 6.8 Hz, 2H), 3.88 (s, 3H), 3.92 (s, 3H), 6.96 (d, J = 8.2 Hz, 1H),  7.01 (dd, J = 8.1, 

1.8 Hz, 1H), 7.05 (d, J = 8.2 Hz, 2H), 7.22 (d, J = 8.3 Hz, 1H), 7.36 (s, 1H); 13C NMR (100 

MHz, CDCl3) δ 21.6, 28.5, 30.2, 56.1, 62.4, 108.9, 111.6, 113.6, 115.4, 118.8, 122.2, 123.3, 

127.7, 128.3, 129.2, 133.4, 135.4, 147.7, 149.0;  HRMS (EI) calcd for C20H23NO3 325.1678, 

found 325.1685. 

Methyl 2-(3-methoxyphenyl)-1-methyl-3-(thiophen-3-yl)-1H-indole-5-carboxylate (3q) 

N

MeO2C

Me OMe

S

  This product was obtained as a yellow oil in a 70% yield: 1H 

NMR (400 MHz, CDCl3) δ 3.67 (s, 3H), 3.75 (s, 3H), 3.94 (s, 3H), 6.87 (s, 1H), 6.86 (m, 3H), 

7.18-7.27 (m, 1H), 7.30-7.42 (m, 3H), 8.00 (d, J = 8.6 Hz, 1H), 8.57 (s, 1H); 13C NMR (100 

MHz, CDCl3) δ 31.3, 52.0, 55.4, 109.4, 111.8, 114.5, 116.5, 121.8, 122.3, 122.8, 123.4, 

123.8, 124.9, 126.6, 128.8, 129.8, 132.8, 134.5, 138.9, 139.7, 159.7, 168.2; HRMS (EI) calcd 

for C22H19NO3S 377.1086, found 377.1095. 
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4.6.6.  General procedure for the microwave-assisted, one-pot synthesis of 1H-indoles 

In an oven-dried 20 mL microwave vial, N-trifluoroacetyl-2-iodoaniline (0.6 mmol) 

was dissolved in Et3N (4 mL), then PdCl2(PPh3)2 (12.6 mg, 0.018 mmol, 3 mol %), CuI (2.3 

mg, 0.012 mmol, 2 mol %) and the alkyne (0.63 mmol) were added.  The vial was flushed 

with Ar, sealed and stirred at 60 ºC under microwave irradiation for 20-30 min.  The 

resulting mixture was dissolved in CH3CN (4 mL), ArI (0.66 mmol) and Cs2CO3 (586 mg, 

1.8 mmol) were added, and the vial was flushed with Ar, sealed and stirred at 100 ºC under 

microwave irradiation for 30 min.  To the reaction mixture were added ethyl acetate (10 mL) 

and brine (10 mL) and the aqueous layer was extracted with ethyl acetate (2 × 10 mL).  The 

combined organic layers were dried over anhydrous MgSO4 and concentrated under vacuum 

to afford the crude product, which was purified by flash chromatography on silica gel using 

ethyl acetate/hexanes as eluent.  

Ethyl 3-(2-phenyl-1H-indol-3-yl)benzoate (3r) 

CO2Et

N
H This product was obtained as a yellow solid in a 93% yield: mp 145-

147 °C; 1H NMR (400 MHz, CDCl3) δ 1.34 (t, J = 7.1 Hz, 3H), 4.34 (q, J = 7.1 Hz, 2H), 7.16 

(t, J = 7.5 Hz, 1H), 7.22-7.29 (m, 4H), 7.37-7.43 (m, 4H), 7.54 (d, J = 7.7 Hz, 1H), 7.66 (d, J 

= 7.9 Hz, 1H), 7.97 (d, J = 7.8 Hz, 1H), 8.21 (s, 1H), 8.41 (s, 1H); 13C NMR (100 MHz, 

CDCl3) δ 14.5, 61.1, 111.2, 114.1, 119.6, 120.8, 123.0, 127.6, 128.0, 128.4, 128.7, 128.8, 

128.9, 131.0, 131.3, 132.5, 134.8, 134.9, 135.7, 136.1, 167.0;  HRMS (EI) calcd for 

C23H19NO2 341.1416, found 341.1426. 
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2-(3-Methoxyphenyl)-3-(4-methoxyphenyl)-1H-indole (3s) 

N
H

OMe

OMe  This product was obtained as a yellow oil in an 82% yield: 1H NMR (400 

MHz, CDCl3) δ 3.62 (s, 3H), 3.79 (s, 3H), 6.79 (ddd, J = 8.3, 2.6, 0.9 Hz, 1H), 6.89-6.99 (m, 

4H), 7.09-7.22 (m, 3H), 7.32-7.37 (m, 3H), 7.62 (d, J = 7.9 Hz, 1H), 8.19 (s, 1H); 13C NMR 

(100 MHz, CDCl3) δ 55.3, 55.4, 111.1, 113.5, 113.6, 114.2, 115.0, 119.8, 120.5, 122.8, 127.5, 

129.1, 129.9, 131.4, 133.7, 134.2, 135.9, 158.3, 159.7;  HRMS (EI) calcd for C22H19NO2 

329.1416, found 329.1425. 

2-(4-Methoxyphenyl)-5-methyl-3-(3-nitrophenyl)-1H-indole (3t) 

N
H

H3C
OMe

NO2

This product was obtained as an orange oil in an 88% yield: 1H 

NMR (400 MHz, CDCl3) δ 2.43 (s, 3H), 3.77 (s, 3H), 6.83 (d, J = 8.7 Hz, 2H), 7.06 (d, J = 

7.8 Hz, 1H), 7.20-7.28 (m, 3H), 7.40-7.46 (m, 2H), 7.65 (d, J = 7.7 Hz, 1H), 8.06 (d, J = 8.2 

Hz, 1H), 8.23 (s, 1H), 8.30 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 21.8, 55.4, 110.9, 111.3, 

114.6, 118.3, 120.9, 124.5, 124.6, 124.7 128.4, 129.4, 129.7, 130.4, 134.2, 135.6, 136.4, 

137.7, 148.7, 159.7;  HRMS (EI) calcd for C22H18N2O3 358.1317, found 358.1325. 
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4-(5-Methyl-3-phenyl-1H-indol-2-yl)benzonitrile (3u) 

CN
N
H

H3C

This product was obtained as a yellow solid in a 66% yield: mp 219-

221 °C; 1H NMR (400 MHz, acetone-d6) δ 2.37 (s, 3H), 7.02 (d, J = 8.2 Hz, 1H), 7.29-7.39 

(m, 7H), 7.59 (s, 4H), 10.53 (s, 1H); 13C NMR (100 MHz, acetone-d6) δ 21.6, 110.7, 111.8, 

116.7, 117.9, 119.0, 119.5, 125.5, 127.1, 128.9, 129.2, 129.4, 130.6, 132.5, 132.6, 135.6, 

135.8, 138.0;  HRMS (EI) calcd for C22H16N2 308.1313, found 308.1323. 

3-(4-Chlorophenyl)-5-methyl-2-(thiophen-3-yl)-1H-indole (3v) 

N
H

S
H3C

Cl

This product was obtained as a light brown oil in a 67% yield: 1H NMR 

(400 MHz, CDCl3) δ 2.41 (s, 3H), 7.00 (d, J = 4.7 Hz, 1H), 7.05 (d, J = 8.0 Hz, 1H), 7.22-

7.27 (m, 3H), 7.34 (s, 1H), 7.37 (s, 4H), 8.14 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 21.7, 

110.7, 113.5, 119.0, 122.1, 124.6, 126.3, 127.1, 128.9, 130.1, 130.4, 130.5, 131.7, 132.3, 

133.5, 133.9, 134.1; HRMS (EI) calcd for C19H14ClNS 323.0535, found 323.0542. 

Methyl 3-(3-methoxyphenyl)-2-phenyl-1H-indole-5-carboxylate (3w) 

N
H

MeO2C

OMe

 This product was obtained as an ivory solid in a 76% yield: mp 211-

213 °C; 1H NMR (400 MHz, DMSO-d6) δ 3.70 (s, 3H), 3.83 (s, 3H), 6.87 (s, 1H), 6.93 (d, J 



www.manaraa.com

 

 

120 

= 7.9 Hz, 2H), 7.34-7.42 (m, 4H), 7.49 (d, J = 7.0 Hz, 2H), 7.53 (d, J = 8.5 Hz, 1H), 7.81 (d, 

J = 8.5 Hz, 1H), 8.15 (s, 1H), 12.01 (s, 1H); 13C NMR (100 MHz, DMSO-d6) δ 51.7, 54.9, 

111.5, 111.9, 114.2, 114.8, 115.4, 121.1, 122.1, 122.9, 127.6, 127.9, 128.2, 128.5, 129.9, 

131.7, 135.7, 135.8, 138.5, 159.4, 167.0;  HRMS (EI) calcd for C23H19NO3 357.1365, found 

357.1374. 

Methyl 3-[4-(ethoxycarbonyl)phenyl]-2-(4-methoxyphenyl)-1H-indole-5-carboxylate 

(3x) 

N
H

MeO2C
OMe

CO2Et

 This product was obtained as an ivory solid in a 60% yield: mp 

264-266 °C; 1H NMR (400 MHz, DMSO-d6) δ 1.33 (t, J = 7.0 Hz , 3H), 3.78 (s, 3H), 3.83 (s, 

3H), 4.33 (q, J = 7.0 Hz, 2H), 6.98 (d, J = 8.6 Hz, 2H), 7.38 (d, J = 8.6 Hz, 2H), 7.49 (d, J = 

8.1 Hz, 2H), 7.53 (d, J = 8.6 Hz, 1H), 7.81 (d, J = 8.4 Hz, 1H), 8.01 (d, J = 8.1 Hz, 2H), 8.16 

(s, 1H), 12.04 (s, 1H); 13C NMR (100 MHz, DMSO-d6) δ 14.2, 51.7, 55.2, 60.6, 111.4, 112.3, 

114.2, 114.8, 120.5, 121.3, 122.9, 127.2, 127.5, 129.6, 129.7, 136.8, 138.6, 139.9, 159.3, 

165.6, 166.9; HRMS (EI) calcd for C26H23NO5 429.1576, found 429.1588. 
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5.1. ABSTRACT 

An efficient one-pot method for the synthesis of 2,3-disubstituted benzo[b]furans from 

commercially available 2-iodophenols, terminal acetylenes and aryl iodides has been 

developed utilizing Sonogashira reaction conditions. After an initial Sonogashira coupling of 

the 2-iodophenol with a terminal alkyne, cyclization involving the aryl iodide provides the 

2,3-disubstituted benzo[b]furan in good to excellent yields. The use of microwave irradiation 

shortens the reaction times and minimizes the side products. This methodology is especially 

useful for the construction of libraries of highly substituted benzo[b]furans and their 

analogues.    

 

5.2. INTRODUCTION 

Benzo[b]furans have been studied extensively due to the high potential biological and 

pharmaceutical activity of this ring system.1 Thus, numerous synthetic methods to access this 
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important scaffold have been developed.2 Among others, Pd-catalyzed reactions have proven 

to be highly efficient and convenient for the synthesis and functionalization of 

benzo[b]furans. Several review articles and books have been published that summarize 

previous and recent developments in this area.3 In 1996, while developing a method for the 

synthesis of 2-substituted benzo[b]furans, Cacchi and co-workers reported that 2-

alkynylphenol 1 in the presence of vinylic triflate 2 and a palladium catalyst can undergo a 

cyclization to the corresponding 2,3-disubstituted benzo[b]furan 3 in a 60% yield (Scheme 

1).4  

Scheme 1. Synthesis of a 2,3-disubstituted benzofuran from a 2-alkynylphenol 

OH

Ph

+

OTf

5 mol % Pd(PPh3)4
KOAc, MeCN
45 oC, 2 h

O
Ph

Ph

O

Ph

O

1 2 3, 60%  

Cacchi and co-workers proposed that this process most likely proceeds through a 

vinylic palladium intermediate, generated in situ from the vinylic triflate via oxidative 

addition to Pd(0) (Scheme 2). This “R3PdX” species can act as a Lewis acid and coordinate 

with the triple bond of the 2-alkynylphenol 4 to form an alkyne-organopalladium complex 5, 

which thus facilitates nucleophilic attack of the oxygen atom across the activated carbon-

carbon triple bond to form the oxypalladation adduct 6, which, after reductive elimination, 

forms the 2,3-disubstituted benzo[b]furan 7 and regenerates the Pd(0) catalyst. 
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Scheme 2. Proposed reaction mechanism 

OH
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R3X
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R2
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HX

O
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R2R1
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To access the starting 2-alkynylphenols, a 3-step route has been employed in most 

cases. First, the OH group is protected with an appropriate protecting group (e.g. acetyl), then 

the Sonogashira coupling is conducted, and, following deprotection of the phenol, the desired 

2-alkynylphenol is obtained, generally in moderate yields. The major problem with the direct 

Sonogashira reaction between a 2-iodophenol and a terminal alkyne is that the coupling is 

often inefficient. In addition, if basic reaction conditions are employed, 3H-benzofurans are 

often formed as products, instead of the desired 2-alkynylphenol. 

In order to transform the Cacchi’s process into a three-component process, Flynn and 

co-workers employed MeMgCl as an additive to mask the phenol oxygen of the iodophenol 

(8). They were then able to conduct an efficient Sonogashira coupling and subsequent 

cyclization to a benzofuran (10) without isolating the corresponding 2-alkynylphenol (9) 

(Scheme 4).5  A number of highly substituted benzofurans 10 have been obtained in 

moderate to good yields using this approach. The authors applied their methodology to the 
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synthesis of (±)-frondosin B and its analogues, and benzo[b]furan-containing inhibitors of 

tubulin polymerization. 6  However, this method has not been found suitable for the 

construction of libraries of 2,3-substituted benzofurans, due to the highly reactive nature of 

the MeMgCl reagent and its incompatibility with a large number of functional groups.  

Scheme 4. A one-pot approach to benzofurans using MeMgCl 

OH

I
R1 + R2

1. MeMgCl, THF, 0 oC
2. cat. Pd(PPh3)4, 
    65 oC, 2 h

OMgCl
R1

R2

R1

O

R3

R2

1. cool to 18 oC
2. R3X
3. DMSO, 95 oC
    4-19 h

R3 = Ar, Vinylic, Allyl
X = Br, I

8 9 10, 45-81%

 

In 2004, Hu, Fathi, and Yang, in order to access a 210 member library of 2,3-

disubstituted benzofurans 13, optimized the method developed by Cacchi starting from 2-

alkynylphenols 11, and, after their optimization studies, found more efficient conditions for 

the formation of 2,3-diarylsubstituted benzo[b]furans from 2-alkynylphenols (12) and aryl 

iodides (Scheme 5).7 However, considering the 3-step route required for synthesis of the 2-

alkynylphenols 12, the average yields of the final benzofurans 13 (over 4 steps) were only 

moderate.  

Scheme 5. Library of 2,3-disubstituted benzofurans 

OH

I
R1

1. Ac2O/Py
2. 
    cat. PdCl2(PPh3)2, cat. CuI
    CH3CN, Et3N, 25 oC, 24 h
3. NH4OH, MeOH/THF
    25 oC, 0.5 h

R2

OH
R1

R2
5 mol % Pd2(dba)3
10 mol % bpy
ArI, K2CO3, MeCN
50 oC, 5 h

R1

O

R3

R2

R3 = Ar, HetAr
13, 52 - 87%11 12
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During the course of our own investigations into methodology for the synthesis of 2,3-

disubstituted indoles under Sonogashira conditions,8 we have found that 2-iodophenols can 

also participate in an analogous process, providing an efficient and convenient new route to 

2,3-disubstituted benzofurans. This finding encouraged us to proceed with our own 

optimization studies of this process. 

 

5.3. RESULTS AND DISCUSSION 

5.3.1. Optimization of the reaction conditions 

The 2-iodophenol 14, phenyl acetylene (15), and ethyl 4-iodobenzoate (17) have been 

employed as starting materials under the reaction conditions we developed for the synthesis 

of indoles,8 providing the benzofuran 18 in a 51% yield (Scheme 6). In order to improve the 

yield, optimization of the reaction conditions has been carried out as reported in Table 1. 

Scheme 6. Model reaction 

OH

I

Ph

Pd catalyst, CuI
solvent1, MW, t1, T1

OH

Ph solvent2, MW
25 min, 100 oC

IEtO2C
O

Ph

CO2Et

14
15

16 17 18  
Table 1. Optimization of the reaction conditionsa 

entry time 

 (min) 

temp. 

(oC) 

solvent ratio 

14:15:17 

catalyst yield 18b 

 (%) 

step 1 step 1 step 1 step 2 

1 15 60 Et3N MeCN 1:1.05:1.1 
2 mol % PdCl2(PPh3)2 

1 mol % CuI 

51 

 

2 15 60 Et3N MeCN 1:1.05:1.1 
2 mol % Pd(PPh3)4 

1 mol % CuI 
23 
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Table 1 continued. 

3 15 60 Et3N MeCN 1:1.05:1.1 
2 mol % Pd(dppe)2 

1 mol % CuI 
10 

4 15 60 Et3N MeCN 1:1.05:1.1 

2 mol % Pd(OAc)2 

4 mol % PPh3 

1 mol % CuI 

6 

5 15 60 Et3N MeCN 1:1.05:1.0 
2 mol % PdCl2(PPh3)2 

1 mol % CuI 
53 

6 15 60 iPr2NH MeCN 1:1.05:1.0 
2 mol % PdCl2(PPh3)2 

1 mol % CuI 
50 

7 15 60 Et3N DMF 1:1.05:1.0 
2 mol % PdCl2(PPh3)2 

1 mol % CuI 
34 

8 15 60 Et3N THF 1:1.05:1.0 
2 mol % PdCl2(PPh3)2 

1 mol % CuI 
29 

9 15 60 Et3N Toluene 1:1.05:1.0 
2 mol % PdCl2(PPh3)2 

1 mol % CuI 
15 

10 25 80 Et3N MeCN 1:1.05:1.0 
2 mol % PdCl2(PPh3)2 

1 mol % CuI 
20 

11c 15 25 Et3N MeCN 1:1.05:1.0 
2 mol % PdCl2(PPh3)2 

1 mol % CuI 
53 

12 30 25 Et3N MeCN 1:1.05:1.0 
2 mol % PdCl2(PPh3)2 

1 mol % CuI 
73 

13 30 25 Et3N MeCN 1:1.05:1.0 
3 mol % PdCl2(PPh3)2 

2 mol % CuI 
86 

14d 30 25 
NMM/ 

Et3N 
MeCN 1:1.2:1.0 

3 mol % PdCl2(PPh3)2 

2 mol % CuI 
89 

15e 30 25 
THF/ 

Et3N 
MeCN 1:1.2:1.0 

3 mol % PdCl2(PPh3)2 

2 mol % CuI 
96 

a Unless otherwise noted, all of the reactions were carried out under microwave irradiation on a 1.0 mmol scale 

in microwave-resistant vials. b Isolated yields after column chromatography. c When the first step of the reaction 

was carried out at 25 oC, much cleaner reaction mixtures were obtained than at 60 oC. d 0.5 ML of N-

methylmorpholine (NMM)/1.5 mL of Et3N using anhydrous solvents under argon. e 0.5 ML of THF/1.0 mL of 

Et3N, and CuI were added as a solution in 0.5 mL of Et3N using anhydrous solvents under argon. 
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Our initial examination of a number of palladium catalysts (Table 1, entries 1-4) 

indicated that bis(triphenylphosphine)palladium dichloride provided the best results. 

Changing the base from triethylamine to diisopropylamine (entries 5 vs 6) did not improve 

the yield of the desired benzofuran 18. A study of the effect of various solvents on the second 

cyclization step revealed that DMF afforded product 18 in a 34% yield (entry 7), whereas 

THF and toluene were less efficient, providing only 29% and 15% yields, respectively 

(entries 8 and 9). Thus, acetonitrile proved to be the best solvent for this transformation. An 

increase in the temperature of the first step of the reaction to 80 oC decreased the yield of the 

desired product to 20% (entry 10), whereas conducting the first step at room temperature did 

not affect the yield of the product and the reaction was found to be cleaner based on TLC 

analysis when compared to the same reaction at 60 oC. Increasing the reaction time of the 

first step at room temperature to 30 minutes improved the yield of benzofuran 18 to 73% 

(entry 12). Furthermore, slightly increasing the catalyst loading and finding the best Pd/Cu 

catalyst ratio (3 mol % and 2 mol % respectively) improved the yield of benzofuran 18 to 

86% (entry 13).  

After the initial evaluation of the scope had been performed, the solubility of many 

iodophenols in triethylamine was found to be insufficient. The first step of the process was 

inefficient, leading to the exclusive formation of coupling products of the aryl iodides with 

the terminal alkyne and affording only low yields of the cyclized benzofurans. Thus, 

additional evaluation of the solvents for the first step has been performed.  

In this methodology, the choice of solvents plays a crucial role. For the first step, the 

ideal solvent needs to be suitable for an efficient Sonogashira reaction, but should not 
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promote cyclization of the 2-alkynylphenol, which will result in formation of the undesired 

3H-benzofuran. The second step, on the other hand, requires a solvent, which will promote 

the cyclization. We therefore tried to add additional reagents to the triethylamine to improve 

the solubility of the iodophenols, but retain reaction conditions favorable for the Sonogashira 

coupling. Solvents, like acetonitrile and DMF, solubilized the iodophenols well, but were not 

suitable for the first step, since they promote the cyclization pathway. The best additives 

were found to be N-methylmorpholine (NMM) (entry 14) and THF. Eventually, the ratio of 

3/1 triethylamine/THF afforded the best results and was chosen as our optimized conditions. 

After we discovered that the reaction was sensitive to the palladium/copper ratio, we again 

looked at this factor. We subsequently found that due to the very low amounts of CuI needed, 

it was better to add the exact amount of CuI desired as a 7.5M solution in Et3N. When 

running the reaction under an inert atmosphere and anhydrous conditions, this allowed us to 

increase the yield of the desired benzofuran product 18 to 96% (entry 15). 

4.3.3. Evaluation of the reaction scope and limitations 

After “optimal” conditions for the formation of benzo[b]furan 18 were found, an 

evaluation of the reaction scope was performed (Table 2). 

Table 2. Scope of the reaction 

entry iodophenol acetylene aryl iodide product yielda (%) 

1 
OMe

OH

I

 
19 

15 17 
O

Ph

CO2Et

OMe  
20 

91 
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Table 2 continued. 

2 OH

IMeO2C

 
21 

15 17 

O
Ph

CO2Et

MeO2C

 
22 

92 

3 
OH

I

 
23 

15 17 
O

Ph

EtO2C

 
24 

53 

4 OH

IBr

 
25 

15 17 

O
Ph

CO2Et

Br

 
26 

84 

5 25 15 
I

CO2Et

 
27 

O
Ph

Br

CO2Et

 
28 

60b 

6 

NMe I

OH  
29 

15 17 

N

O
Ph

CO2Et

N

O
Ph

+

Me

Me

 
30 + 31 

12+88c 
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Table 2 continued. 

7 
O

I
HO

O

Ph  
32 

15 17 
O

O

Ph

O

Ph

 
33 

58c 

8 14 

OMe  
34 

17 

O

CO2Et

OMe
 

35 

94 

9 14 
OMeMeO  

36 

17 
O

CO2Et

OMe

OMe  
37 

93 

10 14 

NMe2  
38 

17 

O

CO2Et

NMe2
 

39 

83 

11 14 
CHO

 
40 

27 
O
OHC

EtO2C

 
41 

69d 

12 14 
CN  

42 

17 

O
CN

CO2Et

 
43 

tracee 
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Table 2 continued. 

13 21 
 

44 

27 
O

CO2Et

MeO2C

 
45 

52 

14 14 
S  
46 

17 

O

CO2Et

S  
47 

100 

15 14 N
N

Me

 
48 

17 
O

CO2Et

N N

Me  
49 

63f 

16 14  
50 

17 

O

CO2Et

 
51 

traceg 

17 14 15 PhI 
O

Ph

Ph
 

52 

87 

18 14 15 

OMe

I  
53 

O
Ph

OMe

 
54 

53h 
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Table 2 continued. 

19 14 15 
I

OMe

 
55 

O
Ph

OMe

 
56 

84 

20 14 15 

CN

I  
57 

O
Ph

CN

 
58 

98 

21 14 15 

NO2

I  
59 

O
Ph

NO2

 
60 

75 

22 14 15 
I

NO2
 

61 
O

Ph

O2N

 
62 

74 

23 14 15 

Cl

I  
63 

O
Ph

Cl

 
64 

96 

24 14 39 

 
65 

O S

O

 
66 

73 
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Table 2 continued. 

25 14 15 
NTs

I  
67 

O
Ph

NTs

 
68 

58 

26 14 15 
O

O

I  
69 

O
Ph

O
O

 
70 

43 

27 O2N OH

I

 
71 

15 69 

O
Ph

O
O

O2N  
72 

24 

28 
 

19 Me  
73 

N

OHC

F

I  
74 

O

N

OHC

F

OMe Me  
75 

65 

29 14 15 
O Me

Me

I  
76 

O
Ph

O Me

Me

 
77 

34 

a Isolated yields after column chromatography. b This compound was prepared on a large scale and recrystallized, 

what might have contributed to the lower yield. c A substantial quantity of aryl iodide 17 remained unreactive. d 

1.0 Equiv. of alkyne was employed. e The reaction afforded a complex mixture; for an alternative route to 43, 

see Scheme 7.  f1.0 Equiv. of alkyne was employed and the first step of the process was run at 60 °C. g A small 

amount of product was observed as part of an inseparable complex mixture. h The second step of the process 

was conducted at 80 °C with the addition of Pd(PPh3)4. 
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First, several different iodophenols have been investigated under our optimized reaction 

conditions (Table 2, entries 1-7). The electron-rich methoxy-containing phenol 19, and the 

electron-poor ester-containing phenol 21 afforded the expected benzo[b]furans 20 and 22 in 

91% and 92% yields, respectively (entries 1 and 2). When the 6-allyl-2-iodophenol 23 was 

employed, product 24 was formed, albeit in a lower 53% yield (entry 3). The presence of a 

bromine atom para to the hydroxy group was well tolerated and the bromo-containing 

benzo[b]furans 26 and 28 were isolated in 84% and 60% yields, respectively (entries 4 and 5). 

Even though the addition of THF greatly improved the solubility of many of the starting o-

iodophenols, some substrates (e.g. 5-iodovanillin, 7-iodo-8-hydroxyquinoline-5-sulfonic acid, 

and 5-iodouracil) still exhibited insufficient solubility in the Et3N/THF mixture to afford 

good results. The poor solubility prevented the first coupling step from proceeding in 

acceptable yield and thus sharply reducing the yield of the three-component coupling product 

and increasing the number of side products.  

When 5-hydroxy-6-iodopicoline (29) was employed, the desired product 31 was 

isolated, but in only 12% yield (entry 6). The 3H-furo[2,3-b]pyridine 31 was isolated as a 

major product in 88% yield. The flavone-derived iodophenol 32 failed to produce the desired 

three-component coupling product and afforded compound 33 in a 58% yield, along with 

unreacted aryl iodide 17 (entry 7).  

In order to continue our evaluation of the scope of this process, various terminal 

alkynes have been studied (entries 8-16). Alkynes bearing electron-donating groups, such as 

34, 36 and 38, were well tolerated, providing benzofurans 35, 37 and 39 in 94%, 93% and 

83% yields, respectively (entries 8-10). The alkyne 40, containing an electron-withdrawing 
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aldehyde group in the position ortho to the alkyne functionality was also tolerated, providing 

the product 41 in a 69% yield (entry 11). However, when a stronger electron-withdrawing 

cyano groups (42) was present in the alkyne, no cyclization product was observed (entry 12). 

Instead a complex reaction mixture, containing the 3H-benzofuran 79, the coupling product 

of 42 with 17, as well as trace amounts of other products was obtained. This result can be 

rationalized by examining the nucleophilicity of the alkyne moiety. When an electron-

withdrawing group is present, the electron density on the carbon-carbon triple bond is 

decreased, thus promoting cyclization of the OH group, without interception by the desired 

arylpalladium iodide species. In the case of 4-cyanoethynylbenzene (42), by using the 

corresponding TMS-protected phenol 78 and adding TBAF during the second step of the 

sequence, we were able to obtain the desired benzo[b]furan product 43 in a 53% yield 

(Scheme 7).  

Scheme 7. An alternative route employing 4-cyanoethynylbenzene 

OTMS

I

O
CN

CO2Et

43, 53%78

1. 42, 3 mol % PdCl2(PPh3)2, 2 mol % CuI
MeCN, Et3N, MW, 60 oC, 30 min

2. 17, TBAF (1.5 equiv), MW, 100 oC, 25 min +

79, 11%

O
CN

 

The use of 1-ethynylcyclohexene (44) afforded the desired benzo[b]furan 45 in an 52% 

yield (entry 13). The heterocycle-containing terminal alkynes 46 and 48 were also well 

tolerated under our reaction conditions, providing thiophenyl- and methylimidazolyl-

substituted benzofurans 47 and 49 in 100% and 63% yields respectively (entries 14 and 15). 

Unfortunately, aliphatic acetylenes [e.g. 1-pentyne (50)] led to formation of the desired 
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benzo[b]furan 51 in only trace amounts and afforded a complex reaction mixture (entry 16). 

The major side product in this case was the coupling product of the terminal alkyne 50 with 

the aryl iodide 17, which suggests an inefficiency in the Sonogashira coupling step. Various 

attempts to modify the reaction conditions failed to improve the outcome of this reaction. 

Finally, we examined the scope of the aryl iodides that can be used in this process 

under our optimized reaction conditions. Starting with iodobenzene, 2,3-

diphenylbenzo[b]furan (52) was obtained in an 87% yield (entry 17). When 4-iodoanisole 

(53) was employed, only a 22% yield of benzofuran 54 was obtained under our optimized 

conditions. However, using a slightly lower temperature (80 °C) and an additional loading of 

the Pd catalyst in the second step improved the yield of the product 54 to 53% (entry 18). 

Surprisingly, the presence of an electron-donating methoxy group in the meta-position of the 

aryl iodide 55 was well tolerated and afforded the desired heterocycle 56 in an 84% yield 

(entry 19). Aryl iodides with electron-withdrawing groups, such as 4-iodobenzonitrile (57) 

and 4-iodonitrobenzene (59), also afforded the corresponding benzofurans 58 and 60 in 98% 

and 75% yields, respectively (entries 20 and 21). Placing the nitro group in the position ortho 

to the iodine did not affect the efficiency of the process, providing benzo[b]furan 62 in a 74% 

yield (entry 22). 4-Chloroiodobenzene (63) afforded the benzo[b]furan 64 in an excellent 

96% yield (entry 23). The product 66 has been obtained in a 73% yield by employing 3-

ethynylthiophene (46) and p-iodoacetophenone (65) (entry 24). Various heterocyclic aryl and 

vinylic iodides have been examined under our standard reaction conditions, providing the 

corresponding heterocyclic products in moderate to good yields (entries 25-28). N-Tosyl 3-

iodoindole (67) afforded the desired product 68 in a 58% yield (entry 25). When employing 
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2-iodochromene (69), the bis-heterocyclic product 70 was obtained, albeit in only a 43% 

yield (entry 26). When 2-iodo-5-nitrophenol (71) was employed as a starting material with 

the same substrate, only a 24% yield of the benzofuran 72 could be obtained (entry 27), 

probably due to the electron-withdrawing effect of the nitro group, which ends up in a 

position para to the alkyne triple bond after the initial Sonogashira coupling. To our delight, 

the highly substituted 2-fluoro-3-formyl-4-iodopyridine (74) coupled with 6-methoxy-2-

iodophenol (19) and 3-tolyl acetylene (73) to afford the highly substituted benzofuran 75 in a 

65% yield (entry 28). Finally, the vinylic halide 2-iodo-4,4-dimethylcyclohex-2-enone (76) 

was allowed to react with o-iodophenol and phenyl acetylene to generate the corresponding 

heterocycle 77, albeit in only a 34% yield (entry 29). 

5.3.3. Study of the additional processes and further diversification 

Recently, several processes describing Heck-type Pd(0) or Rh(I)-catalyzed reactions of 

2-alkynylphenols with alkenes have been reported.9 We were interested in knowing if our 

methodology could provide such a Heck-type transformation to afford 3-alkenylbenzofurans 

in a one-pot fashion from 2-iodophenol (14). Gratifyingly, by employing butyl acrylate and 

slightly modifying our reaction conditions for the second step, we were able to obtain the 

olefinic product 80 in a 56% yield (Scheme 8).  

Scheme 8. Synthesis of benzofurans from iodophenols, alkynes and alkenes 

O
Ph

CO2Bu
3% PdCl2(PPh3)2, 2% CuI
Et3N, rt, 30 min, MW

1.

2. MeCN, 60 oC, 25 min, MW
KOAc (3 equiv), benzoquinone (1 equiv)OH

I

R

CO2Bu (5 equiv)
80, R = Ph, 56%
81, R = 1-cyclohexenyl, 70%14
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The alkyne 1-ethynylcyclohexene (44) also afforded the desired product 81 in a 70% 

yield.  

We have also investigated the possibility of employing aryl boronic acids (analogous to 

a Suzuki-Miyaura coupling)10 and terminal alkynes (analogous to a Sonogashira coupling)11 

in the same process. However, there was no evidence for formation of the expected 2,3-

disubstituted benzo[b]furans in the two cases we examined using our standard reaction 

conditions.  The major product in both cases was the corresponding 3H-benzofuran. This 

does not mean that there are no reaction conditions under which the desired 

Sonogashira/Suzuki-Miyaura process won’t occur.  

We have also attempted Pd-catalyzed couplings with the 5-bromobenzofurans 26 and 

28 prepared by our benzofuran synthesis to illustrate how our benzofurans can be further 

diversified to provide a large variety of multisubstituted benzofurans for drug testing. Thus, 

Suzuki-Miyaura10 and Mizoroki-Heck10 couplings proceeded smoothly, affording the 

products 82 and 83 in 83% and 81% yields, respectively (Scheme 9). 

Scheme 9. Pd-catalyzed diversification 

O
Ph

5% Pd(PPh3)4, K2CO3 (3 equiv)
toluene, EtOH, 100 oC, 24 h

O
Ph

Br

MeO

O
Ph

5% Pd(OAc)2, 10% SPhos
Et3N, DMF, 100 oC, 24 h

CO2Et

BuO2C

EtO2C

MeO B(OH)2

82, 83%

83, 81%

BuO2C

CO2Et

26 or 28 (5 equiv)
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5.3.4. Approaches towards the total syntheses of Amurensin H, Gnetuhainin B, and 

Gnetuhainin F 

We envisioned that our three-component approach could be a useful tool for the 

synthesis of selected benzo[b]furan-containing natural products. Amurensin H, Gnetuhainin 

B and Gnetuhainin F were chosen as targets (Figure 1).  

OHO

OH

HO
OH

OH

84 Viniferifuran (Amurensin H)

OHO

OH

HO
OH

OH

HO

85 Gnetuhainin B

O

OMe

HO
OH

OMe

OH

OH

HO

86 Gnetuhainin F  

Figure 1. Structures of Amurensin H, and Gnetuhainins B and F 

Compounds 84-86 belong to a class of oligostilbenes, known for their multiple 

biological activities.12 Amurensin H (84) was isolated from Vitis amurensis and shows 

significant anti-inflammatory activity.13 It was found suitable for the treatment of chronic 

obstructive pulmonary disease.14 Two synthetic pathways have been reported for the total 

synthesis of benzofuran 84. One involves the oxidative coupling of resveratrol,15 and the 

other involved the cyclization of ortho-(benzyloxy)benzophenones using a phosphazene 

reagent.16 Gnetuhainin B (85) and Gnetuhainin F (86) were isolated from Gnetum hainanense 
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species, a traditional Chinese medicine herb.17,18 Compound 3 has been prepared through 

oxidative coupling in 9 steps starting from methyl 3,5-di(benzyloxy)benzoate in 9.8% overall 

yield.19 No total synthesis of Gnetuhainin B has been reported.  

Scheme 10. Proposed retrosynthetic pathway towards benzofurans 84 and 85 

OMeO

OMe

MeO

OMe

OMe

R1

84 or 85

O

X

MeO

MeO
OMe
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MeO

+

MeO

OMe
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R1 = H, 87
R1 = OMe, 88

R1 = H, X = Br, 89
R1 = OMe, X = Br, 90
R1 = H, X = CHO, 91
R1 = OMe, X = CHO, 92

X = Br, 95
X = CHO, 96 R1 = H, 34

R1 = OMe, 97

OMe

P(R)3Br

or

MeO
B(OH)2
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93
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+

+

 



www.manaraa.com

 143 

We envisioned that structurally similar benzofurans 84 and 85 could be obtained from 

the corresponding methoxy analogues 87 and 88 (Scheme 10). Compounds 87 and 88 could 

be obtained by the Pd-catalyzed couplings of boronic acid 93 with compounds 89 or 90 or by 

a Wittig reaction of 94 with 91 or 92. Precursors 89-92 could be prepared using our 3-

component method, starting from iodophenols 95 or 96, commercially available alkynes 34 

or 97, and aryl iodode 98. 

First, we attempted the synthesis of iodophenol 95 (Scheme 11). Iodination of 3,5-

dimethoxybromobenzene (99) afforded compound 101 in a quantitative yield. However, all 

of our attempts to selectively demethylate the methoxy group next to the iodine atom failed. 

Even demethylation of both methoxy groups using known reagents (e.g. BBr3, HI) did not 

prove to be possible, resulting in complex reaction mixtures with the predominant product 

being 3,5-dihydroxybromobenzene.  

Scheme 11. Unsuccessful approach toward phenols 95 and 96 

X

OMeMeO

NIS, pTsOH

MeCN, rt, 24 h

X

OMeMeO

I

X = Br, 101, 100%
X = CHO, 102, 87%

X = Br, 99
X = CHO, 100

95 or 96

 

We then decided to proceed with the synthesis of iodophenol 96 suitable for the Wittig 

route. In this case, starting with compound 100, we were able to obtain compound 102 in an 

87% yield (Scheme 11). However, all attempts to demethylate compound 102 failed as well. 

As an alternative, we decided to investigate the possible selective lithiation of compound 103 

(Scheme 12). With the good C-H activating ability of a diethylcarbamate group and a MOM 

directing group being ~ 1000 times more reactive than a OMe group, we expected the 
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exclusive lithiation of compound 103 at position 2, which followed by iodination would 

result in the formation of the desired compound 104. However, even running the lithiation 

reaction at -100 oC, we observed no selectivity and obtained an approximately 1:1 mixture of 

isomers 104 and 105 (Scheme 3). This might be attributed to the extremely good activating 

ability of the diethylcarbamide group, so that the difference between the OMOM and OMe 

groups does not affect the selectivity.  

Scheme 12. Unsuccessful iodination of compound 103 

OMOMMeO

NEt2O

OMOMMeO

NEt2O

OMOMMeO

NEt2O

+1. sBuLi, THF, -100 oC
2. I2, 30 min, rt

I I

68%, ~1:1 mixture
103 104 105

2

3

5

 

Due to complications with the selective iodination, we decided to pursue another 

strategy for the synthesis of phenol 96, where the iodine atom is introduced through 

deamination/iodination of an amino group. This method proved to be efficient, leading to the 

formation of iodophenol 108 in 57% yield from compound 107 (Scheme 13).  

Scheme 13. Synthesis of iodophenol 108 

OMe

CO2Me

MeO

1. HNO3/H2SO4
-15 oC

2. BCl3/CH2Cl2
3. cat. Pd/C,
cyclohexene
EtOAc, reflux

OH

CO2Me

MeO

NH2

OH

CO2Me

MeO

I

107, 66%

1. H2SO4, DMSO
2. NaNO2/H2O
3. KI/H2O

108, 57%106  

With compound 108 in hand, we decided to postpone the transformation of the 

CO2Me group to the desired aldehyde and to try our three-component coupling using the 

compound 108. From our studies of the scope of our benzofuran synthesis, we knew that a 
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CO2Me group is tolerated better than an aldehyde under our reaction conditions. Thus, this 

adjustment should be beneficial. 

Unfortunately, when we tried to employ compound 108 in our three-component 

coupling, its solubility was insufficient. Thus, the first step was inefficient and no formation 

of the desired benzo[b]furan 110 was observed (Scheme 14). We then decided to change the 

CO2Me group to a CO2Hex group to improve the solubility and indeed the CO2Hex analogue 

109 had excellent solubility in the Et3N/THF mixture. To our disappointment, however, the 

three-component coupling using compound 109 did not result in the formation of the desired 

benzo[b]furan product 111, producing instead a complex reaction mixture, mostly composed 

of apparent products of decomposition of the starting materials.  

Scheme 14. Unsuccessful three-component coupling employing phenols 108 and 109 

O

MeO
OMe

OMe

1. 34, 3 mol % PdCl2(PPh3)2,
2 mol % CuI, Et3N/THF,
MW, 30 min, rt

2. 98, MeCN, MW,
25 min, 100 oC

CO2R

OHMeO

I

MeO

CO2R

R = Me, 108
R = Hex, 109

R = Me, 110, 0%
R = Hex, 111, 0%  

The presence of an ester group right next to the iodine might be the reason for compounds 

108 and 109 being ineffective in the Sonogashira reaction.  

Although our efforts did not allow us to obtain the desired compounds 84 and 85, we 

are continuing to study alternative ways to complete this synthesis utilizing our three-

component methodology.  

For the synthesis of Gnetuhainin F (86), we envisioned a similar retrosynthetic strategy 

(Scheme 15). In this case, compound 86 might be obtained from protected compound 112. 
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Benzofuran 112 could hopefully be obtained by the Pd-catalyzed reactions of 113 with 115 

or 116 or, alternatively, a Wittig or Horner-Wadsworth-Emmons reaction of 114 with 117 (or 

a Wittig reaction with the corresponding phosphonium salt).  

Scheme 15. Retrosynthetic pathway towards benzofuran 86. 
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The three-component coupling could then be employed for the synthesis of 113 or 114 

from phenols 118 or 119, alkyne 120 and aryl iodide 121.  

As can be seen from Scheme 15, various protecting groups could be used for this 

transformation. Indeed, we found out that the choice of the protecting group plays a crucial 

role in the success of these reactions. Three most commonly used protecting groups have 

been studied: TBDMS, MOM and acetyl. 

To study the possibility of the three-component coupling for the synthesis of 113 and 

114, we started with the preparation of the required precursors 118-121 in a few steps from 

commercially available starting materials. Iodophenols 118 and 119 and TBDMS-, MOM- 

and acetyl-protected 120 and 121 have all been successfully obtained in good yields.20 

When compounds 120 and 121 with PG = TBDMS were employed with iodophenol 

118, our three-component coupling was possible, however not efficient, and afforded an 

inseparable mixture of the desired product 113a and the coupling product of the aryl iodide 

121a and alkyne 120a (Scheme 16). In the case of PG = MOM, the three-component 

coupling didn’t prove to be efficient and none of the desired product 113b was observed. The 

case of PG = acetyl was found to be the most suitable using our reaction conditions. Our 

three-component methodology in this case proved to be efficient and afforded the desired 

product 113c in a 60% isolated yield.  
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Scheme 16. Three-component coupling for the synthesis of compounds 113 

O

OMe

OPG
OPG

OMe

OPG
Br

I

OH
OMe

Br

OPG
OMe

I

OPG

OPG
118 120

121 PG  = TBDMS, 113a - mixture
PG = MOM, 113b, 0%
PG = Ac, 113c 60%

1. Et3N/THF, 3% PdCl2(PPh3)2
    2% CuI, 25 oC, MW, 30 min
2. MeCN
    MW, 100 oC
    25 min

 

For the preparation of benzofuran 114, we chose compounds 120 and 121 with acetyl 

protecting groups. Due to the poor solubility of 5-iodovanillin (119) in our Et3N/THF 

mixture, we decided to use the protected compound 122. When iodophenol 122 was 

employed in our three-component coupling with the acetyl-protected compounds 120 and 

121, the desired benzofuran product 123 was formed in a 65% yield and then transformed to 

the corresponding aldehyde 114 in a 94% yield (Scheme 17). 

Scheme 17. Synthesis of compound 114 
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After successful preparation of both compounds 113c and 114, we attempted their 

conversion to compound 112. For compound 114, a Horner-Wadsworth-Emmons reaction 

was chosen to prepare the E-alkene moiety of Gnetuhainin F. Both acetyl- and MOM-

protected compounds 117a and 117b have been prepared and employed under several 

reaction conditions described for this type of transformation in the literature, namely 

employing tBuOK,21 sBuLi or LiHMDS22 as a base. Unfortunately, none of the desired 

product 112 was obtained (Scheme 18). A complex mixture mainly composed of apparent 

decomposition/deacetylation products of 114 was obtained in all cases. 

Scheme 18.  Horner-Wadsworth-Emmons reaction of benzofuran 114 

PO(OEt)2

OPG

OPG

PG = Ac, 117a
PG = MOM, 117b

i, ii or iii

O

OMe

AcO
OAc

OMe

OAc
OHC

114

+
complex mixture

i) 1. 117a or 117b, tBuOK, THF, 0 oC, 10 min; 2. - 78 oC, then 114, rt, 16 h. ii) 1. 117b, sBuLi, THF, 0 oC, 10 min; 2. 
- 78 oC, then 114, rt, 16 h. iii) 1. 117a, LiHMDS, THF; 2. 114 16 h  

We then proceeded with further derivatization of compound 113c. Suzuki coupling 

with unprotected boronic acid 116 (R =H) was employed. However, none of the desired 

product was formed (Scheme 19). In this case, the major complication of this reaction was 

also found to be partial deacetylation of the precursor 113, obviously initiated by aqueous 

basic reaction conditions. This led to complex reaction mixtures and did not allow the desired 

compound 112 to be formed.  
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Scheme 19.  Suzuki coupling of  benzofuran 113c with boronic acid 116. 

OH

HO B(OH)2

116

O

OMe

AcO
OAc

OMe

OAc
Br

113c

+ complex mixture

5 mol % Pd(PPh3)4
aq. Cs2CO3

EtOH/DMF, 120 oC 
MW, 20 min

 

We then turned to an investigation of the Heck reaction of compound 113c that would 

hopefully tolerate the acetyl groups. We prepared 3,5-diacetoxystyrene (115) and attempted a 

Heck reaction with compound 113c under reaction conditions employing NaHCO3,
23 K2CO3, 

or Et3N as a base in combination with different ligands. However, only complicated reaction 

mixtures have been obtained (Scheme 20). This result is discouraging, since conditions i) in 

Scheme 20 have been suitable for the synthesis of acetyl-protected resveratrol starting from 

styrene 115 and 4-acetoxybromobenzene (see ref. 23).  

Scheme 20.  Suzuki coupling of  benzofuran 113c with styrene 115. 

OAc

AcO

115

O

OMe

AcO
OAc

OMe

OAc
Br

113c

+ complex mixture
i, ii or iii

i) cat. Pd(OAc)2, cat. P(oTol)3, cat. BHT, DMF, NaHCO3, 150 oC, MW, 5 h
ii) 2.5% Pd(OAc)2, 10% SPhos, Et3N, DMF, 100 oC, 24 h
iii) cat. Pd(OAc)2, cat. P(oTol)3, K2CO3, DMF, 30 oC, 24 h  

Even cleavage of the acetyl groups in compound 113c was found to be challenging, 

leading to complex mixtures. We are now continuing our search for the optimal combination 
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of reaction conditions and functional groups for the successful generation of benzofuran 112 

from compounds 113c and 114. 

 

5.4. CONCLUSIONS 

A novel convenient multicomponent process for the synthesis of 2,3-disubstituted 

benzo[b]furans under Sonogashira conditions has been developed and the scope of this 

process studied. Microwave irradiation has been employed, providing higher yields and 

shorter reaction times. This methodology has proven quite general and should prove a 

valuable tool in the synthesis of combinatorial libraries of benzofurans. Significant progress 

has been achieved in applying the developed methodology to the total synthesis of the 

oligostilbenes Amurensin H, Gnetuhainin B and Gnetuhainin F, but work remains to 

complete these syntheses. 
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5.6. EXPERIMENTAL 

5.6.1. General remarks 

All microwave reactions were carried out in sealed oven-dried microwave vials. A 

Biotage microwave reactor was used for all experiments run at or above 60 oC. A CEM 

microwave reactor was used for the room temperature microwave reactions. The 1H and 13C 

NMR spectra were recorded at 300 and 75.5 MHz or 400 and 100 MHz, respectively. The 

chemical shifts of the 1H NMR and 13C NMR spectra are reported relative to the residual 

signal of CDCl3 (δ 7.26 ppm for the 1H NMR and δ 77.23 ppm for the 13C NMR), acetone-d6 

(2.05 ppm for the 1H NMR and δ 29.92 ppm for the 13C NMR) or DMSO-d6 (2.50 ppm for 

the 1H NMR and δ 39.51 ppm for the 13C NMR). All coupling constants (J) are reported in 

Hertz (Hz). All commercially obtained chemicals were used as received without further 

purification. Thin layer chromatography was performed using commercially prepared 60-

mesh silica gel plates, and visualization was effected with short wavelength UV light (254 

nm). All melting points were obtained using an EZ-Melt automated melting point apparatus 

and are uncorrected. High resolution mass spectra (HRMS) were obtained using an Agilent 

QTOF 6540 mass spectrometer (ESI at a voltage of 70 eV). All mass spectra (MS) were 

obtained using a GCT-Agilent 6890 gas chromatograph/ mass spectrometer (EI at a voltage 

of 70 eV). All IR spectra were obtained using a Nicolet 380 FT-IR apparatus.  

5.6.2. Preparation of the starting compounds for the three-component coupling. 

A majority of the starting materials were purchased from commercial sources and used as 

received. The following compounds were prepared following the procedure described in the 
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literature: iodophenols 19,24 23,25 32,26 and 71;27 3-iodo-N-tosylindole (68),28 3-iodo-4H-

chromen-4-one (69),29 2-iodo-4,4-dimethylcyclohexenone (76).30 

5.6.3. General procedure for the one-pot, three-component Sonogashira/Cacchi type 

coupling for the synthesis of benzofurans. 

The 2-iodophenol (0.5 mmol) and dichlorobis(triphenylphosphine)palladium (10.5 mg, 

3 mol %) were placed in a 5 mL microwave vial and purged with argon. Dry THF (0.5 mL) 

was added and the reaction mixture was stirred until the iodophenol completely dissolved. 

Then dry triethylamine (1.0 mL) and a 3.8M solution of CuI in dry triethylamine (0.5 mL) 

were added and the mixture allowed to stir for 10 min. Then 1.2 equiv. of the corresponding 

alkyne was added; the vial was capped, purged with argon and placed in the microwave 

reactor for 30 min at 25 oC. The corresponding aryl iodide (0.5 mmol) and dry acetonitrile (2 

mL) were added and the reaction mixture was heated in the microwave reactor at 100 oC for 

25 min. After cooling, the solvents were evaporated and column chromatography using ethyl 

acetate/hexane as the eluent afforded the desired products. 

Ethyl 4-(2-phenylbenzofuran-3-yl)benzoate (18) 

O

CO2Et

Yellow solid, 164.2 mg (96%): mp 100-103 °C; 1H NMR (400 MHz, CDCl3) 

δ 1.42 (t, J = 7.1 Hz, 3H), 4.41 (q, J = 7.1 Hz, 2H), 7.21-7.26 (m, 1H), 7.26-7.36 (m, 4H), 

7.49 (d, J = 7.3 Hz, 1H), 7.52-7.66 (m, 5H), 8.14 (d, J = 8.1 Hz, 2H); 13C NMR (101 MHz, 

CDCl3) δ 14.6, 61.3, 111.4, 116.7, 119.9, 123.3, 125.1, 127.4, 128.7, 128.9, 129.8, 129.8, 
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130.4, 131.6, 131.9, 137.9, 151.3, 154.2, 166.6; HRMS calc. for C23H18O3 [M+H]+ 342.1256, 

found 342.1260. 

Ethyl 4-(7-methoxy-2-phenylbenzofuran-3-yl)benzoate (20) 

O

OMe

CO2Et

Bright yellow solid, 169.6 mg (91%): mp 125-127 °C; 1H NMR (400 MHz, 

CDCl3) δ 1.44 (t, J = 7.1 Hz, 3H), 4.08 (s, 3H), 4.43 (q, J = 7.1 Hz, 2H), 6.87 (d, J = 7.9 Hz, 

1H), 7.10 (d, J = 7.8 Hz, 1H), 7.19 (t, J = 7.9 Hz, 1H), 7.28-7.36 (m, 3H), 7.59 (d, J = 8.0 Hz, 

2H), 7.61-7.70 (m, 2H), 8.14 (d, J = 8.0 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 14.6, 56.4, 

61.3, 107.4, 112.3, 117.0, 124.0, 127.5, 128.7, 128.9, 129.8, 129.9, 130.3, 130.3, 131.4, 137.9, 

143.6, 145.6, 151.6, 166.6; HRMS calc. for C24H20O4 [M+H]+ 372.1362, found 373.1438. 

Methyl 3-[4-(ethoxycarbonyl)phenyl]-2-phenylbenzofuran-5-carboxylate (22) 

O

CO2Et

MeO2C

Colorless solid, 162.3 mg (92%): mp 186-187 °C; 1H NMR (300 MHz, 

CDCl3) δ 1.44 (t, J = 7.1 Hz, 3H), 3.92 (s, 3H), 4.44 (q, J = 7.1 Hz, 2H), 7.29-7.47 (m, 3H), 

7.46-7.73 (m, 5H), 8.09 (d, J = 8.6 Hz, 1H), 8.17 (d, J = 8.2 Hz, 2H), 8.20 (s, 1H); 13C NMR 

(75 MHz, CDCl3) δ 14.6, 52.4, 61.4, 111.4, 117.1, 122.4, 125.8, 126.9, 127.4, 128.9, 129.4, 

129.9, 129.9, 130.2, 130.6, 137.2, 152.7, 156.8, 166.5, 167.3; HRMS calc. for C25H20O5 

[M+H]+ 401.1384, found 401.1395. 

Ethyl 4-(7-allyl-2-phenylbenzofuran-3-yl)benzoate (24) 
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O

EtO2C

Colorless oil, 97.6 mg (53%): 1H NMR (300 MHz, CDCl3) δ 1.38 (t, J = 7.1 

Hz, 3H), 3.79 (d, J = 6.7 Hz, 2H), 4.39 (q, J = 7.1 Hz, 2H), 5.11-5.33 (m, 2H), 5.06-5.38 (m, 

2H), 6.16 (ddt, J = 16.8, 10.0, 6.6 Hz, 1H), 7.11-7.40 (m, 6H), 7.53 (t, J = 7.7 Hz, 1H), 7.59-

7.73 (m, 3H), 8.10 (dt, J = 7.8, 1.5 Hz, 1H), 8.23 (t, J = 1.8 Hz, 1H).; 13C NMR (75 MHz, 

CDCl3) δ 14.5, 29.9, 30.2, 34.2, 61.3, 116.5, 117.0, 118.1, 123.5, 123.9, 125.1, 127.2, 128.7, 

129.0, 129.3, 130.0, 130.7, 131.0, 131.6, 133.7, 134.5, 136.1, 150.9, 152.6, 166.6; HRMS 

calc. for C26H22O3 [M+H]+ 382.1563, found 382.1558. 

Ethyl 4-(5-bromo-2-phenylbenzofuran-3-yl)benzoate (26) 

O

Br

CO2Et

Colorless solid, 176.8 mg (84%): mp 135-137 °C; 1H NMR (400 MHz, 

CDCl3) δ 1.44 (t, J = 7.1 Hz, 3H), 4.43 (q, J = 7.1 Hz, 2H), 7.29-7.37 (m, 3H), 7.44 (d, J = 

1.0 Hz, 2H), 7.56 (d, J = 8.3 Hz, 2H), 7.58-7.64 (m, 3H), 8.15 (d, J = 8.2 Hz, 2H); 13C NMR 

(75 MHz, CDCl3) δ 14.6, 61.4, 112.9, 116.3, 116.6, 122.7, 127.5, 128.0, 128.9, 129.4, 129.8, 

129.9, 130.2, 130.6, 131.9, 137.2, 152.6, 153.0, 166.5; HRMS calc. for C23H17Br O3 [M+H]+ 

421.0361, found 421.0434. 

Ethyl 3-(5-bromo-2-phenylbenzofuran-3-yl)benzoate (28) 
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O

EtO2C

Br

 Colorless solid: mp 103-104 °C; 1H NMR (300 MHz, CDCl3) δ 1.39 (t, 

J = 7.1 Hz, 3H), 4.40 (q, J = 7.1 Hz, 2H), 7.28-7.35 (m, 3H), 7.44 (d, J = 1.2 Hz, 2H), 7.50-

7.71 (m, 5H), 8.12 (dt, J = 7.6, 1.4 Hz, 1H), 8.17 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 

14.5, 61.4, 112.9, 116.2, 116.5, 122.7, 126.4, 127.2, 127.9, 128.8, 128.9, 129.2, 129.4, 129.5, 

130.0, 130.9, 131.8, 132.3, 132.8, 134.4, 152.4, 152.9, 166.5; HRMS calc. for C23H18BrO3 

[M+H]+ 421.0434, found 421.0440. 

 

 

 

 

Ethyl 4-(5-methyl-2-phenylfuro[3,2-b]pyridin-3-yl)benzoate (30) 

O

N
Ph

Me

CO2Et

Brown oil, 20.1 mg (12%): 1H NMR (300 MHz, CDCl3) δ 1.42 (t, J = 7.1 

Hz, 3H), 2.66 (s, 3H), 4.37 (s, 2H), 7.13 (d, J = 8.4 Hz, 1H), 7.33-7.40 (m, 3H), 7.63-7.72 (m, 

3H), 7.77 (d, J = 7.9 Hz, 2H), 8.13 (d, J = 7.9 Hz, 2H); 13C NMR (75 MHz, CDCl3) δ 14.6, 

24.7, 61.2, 116.9, 118.4, 119.6, 126.4, 127.8, 128.9, 128.9, 129.6, 129.8, 130.2, 130.2, 136.2, 

146.2, 147.3, 155.3, 166.8; HRMS calc. for C23H20NO3 [M+H]+ 358.1438, found 358.1445. 
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5-Methyl-2-phenylfuro[3,2-b]pyridine (31) 

O

N
Ph

Me

Brown solid, 91.7 mg (88%): mp 114-117 °C; 1H NMR (400 MHz, CDCl3) δ 

2.66 (s, 3H), 7.06 (d, J = 8.4 Hz, 1H), 7.15 (d, J = 0.9 Hz, 1H), 7.35-7.42 (m, 1H), 7.43-7.53 

(m, 2H), 7.65 (d, J = 8.8 Hz, 1H), 7.82-7.96 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 24.5, 

102.3, 118.3, 118.9, 125.4, 129.1, 129.6, 130.1, 146.8, 148.5, 154.8, 159.7; HRMS calc. for 

C14H12NO [M+H]+ 210.0913, found 210.0914. 

2,7-Diphenyl-9H-furo[3,2-f]chromen-9-one (33) 

O

O
O

 Beige solid, 98.4 mg (58%): mp 200-203 °C (decomposed); 1H NMR 

(300 MHz, CDCl3) 1H NMR (400 MHz, CDCl3) δ 6.88-6.96 (m, 1H), 7.34-7.42 (m, 1H), 

7.42-7.58 (m, 6H), 7.79-7.83 (m, 1H), 7.92-7.96 (m, 4H), 8.09-8.11 (m, 1H); 13C NMR (100 

MHz, CDCl3) 103.6, 108.0, 113.9, 116.9, 116.9, 125.3, 126.2, 126.3, 128.9, 129.1, 129.2, 

130.0, 131.5, 131.9, 151.4, 153.8, 159.0, 162.8, 179.1; HRMS calc. for C23H15O3 [M+H]+ 

339.1016, found 339.1020. 

Ethyl 4-[2-(4-methoxyphenyl)benzofuran-3-yl]benzoate (35) 

O

CO2Et

OMe  Yellow solid, 175.0 mg (94%): mp 125-127 °C; 1H NMR (400 MHz, 

CDCl3) δ 1.41 (t, J = 7.1 Hz, 3H), 3.78 (s, 3H), 4.41 (q, J = 7.1 Hz, 2H), 6.83 (d, J = 8.8 Hz, 
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2H), 7.22 (t, J = 7.5 Hz, 1H), 7.29 (t, J = 7.7 Hz, 1H), 7.47 (d, J = 7.7 Hz, 1H), 7.52-7.61 (m, 

5H), 8.13 (d, J = 8.2 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 14.6, 55.4, 61.2, 111.2, 114.2, 

115.2, 119.6, 122.9, 123.2, 124.6, 128.9, 129.5, 129.8, 130.3, 134.1, 138.2, 151.5, 154.1, 

160.1, 166.6; HRMS calc. for C24H20O4 [M+H]+ 372.1362, found 372.1372. 

Ethyl 4-[2-(3,5-dimethoxyphenyl)benzofuran-3-yl]benzoate (37) 

O

CO2Et

OMe

OMe  Cream colored solid, 186.3 mg (93%): mp 102-104 °C; 1H NMR (400 

MHz, CDCl3) δ 1.45 (t, J = 7.1 Hz, 3H), 3.70 (s, 6H), 4.44 (q, J = 7.1 Hz, 2H), 6.45 (s, 1H), 

6.81 (s, 2H), 7.27 (t, J = 7.5 Hz, 1H), 7.37 (t, J = 7.7 Hz, 1H), 7.49 (d, J = 7.8 Hz, 1H), 7.58 

(d, J = 8.2 Hz, 1H), 7.63 (d, J = 8.0 Hz, 2H), 8.18 (dd, J = 8.2, 1.5 Hz, 2H); 13C NMR (100 

MHz, CDCl3) δ 14.6, 55.5, 61.3, 101.6, 101.6, 105.2, 111.4, 117.1, 119.9, 123.3, 125.2, 

129.8, 129.9, 130.3, 131.9, 137.9, 150.9, 154.0, 160.8, 166.5; HRMS calc. for C25H22O5 

[M+H]+ 403.1540, found 403.1549. 

Ethyl 4-[2-(4-(dimethylamino)phenyl)benzofuran-3-yl]benzoate (39) 

O

CO2Et

NMe2  Yellow-green oil, 160.1 mg (83%): 1H NMR (300 MHz, CDCl3) δ 

1.47 (t, J = 7.2 Hz, 3H), 2.99 (s, 6H), 4.47 (q, J = 7.1 Hz, 2H), 7.29 (dt, J = 17.4, 7.0 Hz, 2H), 

6.66 (d, J = 8.5 Hz, 2H), 7.29 (dt, J = 17.4, 7.0 Hz, 2H), 7.48-7.61 (m, 4H), 7.67 (d, J = 8.0 

Hz, 2H), 8.19 (d, J = 8.0 Hz, 2H); 13C NMR (75 MHz, CDCl3) δ 14.5, 40.3, 61.1, 111.1, 
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111.9, 113.7, 117.9, 119.2, 123.0, 124.1, 128.5, 129.2, 129.8, 130.1, 130.2, 138.8, 150.6, 

152.7, 153.9, 166.7; HRMS calc. for C25H23NO3 [M+H]+ 386.1751, found 386.1759. 

Ethyl 4-[2-(2-formylphenyl)benzofuran-3-yl]benzoate (41) 

O

EtO2C

OHC Yellow oil, 128.6 mg (69%): 1H NMR (400 MHz, CDCl3) δ 1.36 (t, J = 7.2 

Hz, 3H), 4.36 (q, J = 7.2 Hz, 2H), 7.36 (t, J = 7.5 Hz, 1H), 7.43 (t, J = 7.6 Hz, 2H), 7.47-7.64 

(m, 5H), 7.73 (d, J = 7.8 Hz, 1H), 8.01 (t, J = 7.6 Hz, 2H), 8.14 (s, 1H), 10.07 (s, 1H); 13C 

NMR (101 MHz, CDCl3) δ 14.5, 61.3, 111.8, 117.6, 120.5, 120.7, 123.8, 125.8, 128.3, 128.3, 

129.0, 129.3, 129.8, 130.5, 131.3, 131.6, 131.9, 132.9, 133.8, 134.3, 148.6, 155.1, 166.2, 

191.0; HRMS calc. for C24H18O4 [M+H]+ 371.1278, found 371.1276. 

Ethyl 4-[2-(4-cyanophenyl)benzofuran-3-yl]benzoate (43) 

O

CO2Et

CN
Colorless solid, 97.5 mg (53%): mp 135-137 °C; 1H NMR (400 MHz, 

CDCl3) δ 1.45 (t, J = 7.1 Hz, 3H), 4.45 (q, J = 7.1 Hz, 2H), 7.29 (t, J = 7.5 Hz, 1H), 7.41 (t, J 

= 7.8 Hz, 1H), 7.48 (d, J = 7.8 Hz, 1H), 7.57 (t, J = 8.1 Hz, 5H), 7.73 (d, J = 8.1 Hz, 2H), 

8.19 (d, J = 8.0 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 14.6, 56.9, 61.4, 111.6, 111.9, 118.8, 

119.7, 120.5, 123.8, 126.3, 127.3, 129.6, 129.8, 130.5, 130.7, 132.5, 134.7, 136.9, 148.7, 

154.4, 166.4; HRMS calc. for C24H17NO3 [M+H]+ 367.1208, found 367.1212. 

Ethyl 4-[2-(cyclohex-1-en-1-yl)benzofuran-3-yl]benzoate (45) 
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O

CO2Et

MeO2C

Yellow oil, 104.1 mg (52%): 1H NMR (400 MHz, CDCl3) δ 1.40 (t, 

J = 7.1 Hz, 3H), 1.62 (t, J = 3.2 Hz, 4H), 2.12 (br s, 2H), 2.18 (br s, 2H), 3.88 (s, 3H), 4.40 (q, 

J = 7.1 Hz, 2H), 6.41-6.48 (m, 1H), 7.47 (d, J = 8.5 Hz, 1H), 7.54 (t, J = 7.7 Hz, 1H), 7.61-

7.66 (m, 1H), 8.01 (dd, J = 10.8, 1.5 Hz, 2H), 8.09 (d, J = 7.8 Hz, 1H), 8.13 (d, J = 1.9 Hz, 

1H); 13C NMR (100 MHz, CDCl3) δ 14.5, 21.9, 22.6, 25.9, 26.6, 52.2, 61.3, 110.8, 115.5, 

121.9, 125.2, 126.4, 127.9, 128.9, 128.9, 130.6, 131.0, 131.1, 131.2, 133.2, 134.5, 154.5, 

156.0, 166.6, 167.4; HRMS calc. for C25H25O5 [M+H]+ 405.1697, found 405.1706. 

Ethyl 4-[2-(thiophen-3-yl)benzofuran-3-yl]benzoate (47) 

O

CO2Et

S   Yellow oil, 174.2 mg (100%): 1H NMR (300 MHz, CDCl3) δ 1.45 (t, J = 7.2 

Hz, 3H), 4.44 (q, J = 7.1 Hz, 2H), 7.21 (t, J = 5.2 Hz, 1H), 7.24-7.30 (m, 2H), 7.35 (t, J = 7.6 

Hz, 1H), 7.47 (d, J = 7.2 Hz, 1H), 7.55 (d, J = 8.1 Hz, 1H), 7.58-7.70 (m, 3H), 8.18 (d, J = 

8.4 Hz, 2H); 13C NMR (75 MHz, CDCl3) δ 14.6, 61.3, 111.3, 115.9, 119.8, 123.4, 123.8, 

125.0, 126.1, 126.2, 129.7, 130.0, 130.3, 131.6, 137.7, 148.3, 154.0, 166.6; HRMS calc. for 

C21H16O3S [M+H]+ 349.0893, found 349.0900. 
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Ethyl 4-[2-(1-methyl-1H-pyrazol-5-yl)benzofuran-3-yl]benzoate (49) 

O N N

CO2Et

Me Green amorphous solid, 109.4 mg (63%): 1H NMR (400 MHz, CDCl3) δ 1.41 

(t, J = 7.1 Hz, 3H), 3.63 (s, 3H), 4.40 (q, J = 7.1 Hz, 2H), 7.31 (t, J = 7.3 Hz, 1H), 7.38 (t, J = 

7.3 Hz, 1H), 7.42-7.49 (m, 1H), 7.55 (t, J = 6.8 Hz, 3H), 7.60-7.72 (m, 2H), 8.11 (d, J = 7.7 

Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 14.6, 61.3, 111.6, 120.2, 123.7, 125.5, 128.1, 128.6, 

128.7, 129.1, 129.9, 130.4, 132.1, 132.2, 132.3, 136.8, 154.8, 166.4 (N-CH3 does not show 

up); HRMS calc. for C21H18N2O3 [M+H]+ 347.1390, found 347.1398. 

2,3-Diphenylbenzofuran (52)31 

O   Yellow-green solid, 117.6 mg (87%): mp 116-119 °C [lit. mp 123 °C]32; 1H 

NMR (300 MHz, CDCl3) δ 7.20-7.36 (m, 5H), 7.46 (m, 6H), 7.56 (d, J = 8.2 Hz, 1H), 7.66 (d, 

J = 7.3 Hz, 2H); 13C NMR (75 MHz, CDCl3) δ 111.3, 117.7, 120.3, 123.1, 124.9, 127.2, 

127.8, 128.6, 128.6, 129.2, 129.9, 130.5, 130.9, 133.1, 150.7, 154.2. 
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3-(4-Methoxyphenyl)-2-phenylbenzofuran (54)33 

O

OMe

Yellow amorphous solid, 79.7 mg (53%): 1H NMR (400 MHz, CDCl3) δ 3.89 

(s, 3H), 6.98-7.05 (m, 2H), 7.23-7.27 (m, 1H), 7.28-7.36 (m, 4H), 7.41-7.45 (m, 2H), 7.50 (d, 

J = 8.5 Hz, 1H), 7.56 (d, J = 8.2 Hz, 1H), 7.69 (dd, J = 8.2, 1.6 Hz, 2H).  

3-(3-Methoxyphenyl)-2-phenylbenzofuran (56)34 

O

OMe

Yellow oil, 125.7 mg (84%): 1H NMR (400 MHz, CDCl3) δ 3.83 (s, 3H), 

6.98-7.03 (m, 1H), 7.13 (dd, J = 11.5, 4.9 Hz, 2H), 7.24-7.45 (m, 6H), 7.56-7.63 (m, 2H), 

7.75 (dd, J = 8.1, 1.5 Hz, 2H).  

 

 

3-(4-Cyanophenyl)-2-phenylbenzofuran (58) 

O

CN

Yellow solid, 140.1 mg (98%): mp 113-115 °C, 1H NMR (400 MHz, CDCl3) 

δ 7.27 (t, J = 7.5 Hz, 1H), 7.32-7.39 (m, 4H), 7.48 (d, J = 7.7 Hz, 1H), 7.59 (dt, J = 11.4, 4.6 

Hz, 5H), 7.69-7.78 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 111.4, 111.6, 115.9, 118.9, 119.6, 
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123.6, 125.4, 127.5, 128.9, 129.2, 129.3, 130.0, 130.5, 132.9, 138.3, 151.8, 154.3; HRMS 

calc. for C21H13NO [M+H]+ 296.107, found 296.1073. 

3-(4-Nitrophenyl)-2-phenylbenzofuran (60)34 

O
Ph

NO2

Yellow solid, 114.5 mg (73%):  mp 135-138 °C; 1H NMR (300 MHz, CDCl3) δ 

7.26-7.28 (m, 1H), 7.32 (d, J = 7.6 Hz, 1H), 7.36-7.39 (m, 4H), 7.52 (d, J = 7.8 Hz, 1H), 7.60 

(d, J = 7.2 Hz, 3H), 7.70 (d, J = 8.2 Hz, 2H), 8.33 (dd, J = 8.7, 1.7 Hz, 2H).  

3-(2-Nitrophenyl)-2-phenylbenzofuran (62) 

O

O2N

 Yellow crystals, 116.6 mg (74%): mp 119-122 °C; 1H NMR (400 MHz, 

CDCl3) δ 7.17-7.25 (m, 2H), 7.28-7.39 (m, 4H), 7.51 (dd, J = 7.5, 1.7 Hz, 1H), 7.52-7.60 (m, 

3H), 7.62 (td, J = 7.7, 1.6 Hz, 1H), 7.68 (td, J = 7.5, 1.5 Hz, 1H), 8.13 (dd, J = 8.0, 1.4 Hz, 

1H); 13C NMR (101 MHz, CDCl3) δ 111.6, 113.4, 119.5, 123.5, 125.2, 125.2, 126.9, 128.2, 

128.9, 128.9, 129.4, 129.8, 130.1, 133.6, 133.6, 149.9, 151.4, 154.0; HRMS calc. for 

C20H13NO3 [M+H]+ 316.0968, found 316.0977. 
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3-(4-Chlorophenyl)-2-phenylbenzofuran (64) 

O

Cl

Yellow solid, 145.6 mg (96%): mp 100-101 °C; 1H NMR (400 MHz, CDCl3) 

δ 7.24-7.28 (m, 1H), 7.35 (dd, J = 10.2, 5.7 Hz, 4H), 7.45 (s, 4H), 7.47 (d, J = 7.8 Hz, 1H), 

7.57 (d, J = 8.2 Hz, 1H), 7.64 (dd, J = 7.9, 1.7 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 111.4, 

116.5, 119.9, 123.3, 125.1, 127.3, 128.7, 128.8, 129.5, 130.0, 130.5, 131.3, 131.5, 133.7, 

143.7, 150.9; HRMS calc. for C20H13ClO [M+H]+ 305.0728, found 305.0731. 

1-[4-(2-(Thiophen-3-yl)benzofuran-3-yl)phenyl]ethanone (66) 

O S

O

Cream colored solid, 116.1 mg (73%): mp 172-174 °C; 1H NMR (400 MHz, 

CDCl3) δ 2.68 (s, 3H), 7.20 (d, J = 5.1 Hz, 1H), 7.27 (dd, J = 7.3, 5.5 Hz, 2H), 7.35 (t, J = 7.7 

Hz, 1H), 7.47 (d, J = 7.8 Hz, 1H), 7.55 (d, J = 8.1 Hz, 1H), 7.65 (dd, J = 8.6, 5.6 Hz, 3H), 

8.09 (d, J = 8.0 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 26.9, 111.4, 115.8, 119.8, 123.4, 

123.9, 125.1, 126.1, 126.3, 129.1, 129.6, 130.2, 131.6, 136.5, 138.1, 148.3, 154.0, 197.9; 

HRMS calc. for C20H14O2S [M+H]+ 318.0715, found 318.0731. 
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3-(2-Phenylbenzofuran-3-yl)-1-tosyl-1H-indole (68) 

O

N
Ts

Yellow amorphous solid, 134.1 mg (58%): 1H NMR (400 MHz, CDCl3) δ 

2.40 (s, 3H), 7.14 (t, J = 7.5 Hz, 1H), 7.25 (ddd, J = 21.5, 15.1, 8.0 Hz, 7H), 7.37 (dd, J = 

15.9, 8.5 Hz, 3H), 7.57-7.64 (m, 3H), 7.76 (s, 1H), 7.85 (d, J = 8.2 Hz, 2H), 8.13 (d, J = 8.3 

Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 21.9, 108.1, 111.5, 114.1, 114.9, 120.3, 121.4, 123.2, 

123.7, 125.1, 125.3, 125.4, 126.9, 127.1, 128.6, 128.7, 130.0, 130.2, 130.5, 130.6, 135.4, 

135.7, 145.3, 152.1, 154.3; HRMS calc. for C29H21NO3S [M+H]+ 463.1242, found 463.1315. 

3-(2-Phenylbenzofuran-3-yl)-4H-chromen-4-one (70) 

O

O
O

Cream colored solid, 73.4 mg (43%): mp 183-184 °C; 1H NMR (400 MHz, 

CDCl3) δ 7.22-7.28 (m, 1H), 7.29-7.40 (m, 4H), 7.40-7.45 (m, 1H), 7.50 (ddd, J = 8.2, 7.2, 

1.1 Hz, 1H), 7.53-7.59 (m, 2H), 7.73-7.78 (m, 3H), 8.01 (s, 1H), 8.36 (dd, J = 8.0, 1.7 Hz, 

1H); 13C NMR (101 MHz, CDCl3) δ 107.8, 111.5, 118.3, 118.5, 120.5, 123.3, 124.5, 125.0, 

125.8, 126.7, 127.3, 128.9, 128.9, 130.4, 130.5, 134.1, 153.1, 154.3, 155.4, 156.7, 176.2; 

HRMS calc. for C23H14O3 [M+H]+ 339.1016, found 339.1015. 
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3-(6-Nitro-2-phenylbenzofuran-3-yl)-4H-chromen-4-one (72) 

O

O
O

O2N  Yellow solid, 44.0 mg (24%): mp 200-203 °C; 1H NMR (400 MHz, 

CDCl3) δ 7.41 (d, J = 3.1 Hz, 3H), 7.50-7.60 (m, 3H), 7.74-7.81 (m, 3H), 8.03 (s, 1H), 8.17 

(d, J = 8.7 Hz, 1H), 8.35 (d, J = 7.9 Hz, 1H), 8.45 (s, 1H); 13C NMR (101 MHz, CDCl3) δ 

107.9, 115.5, 117.1, 118.6, 119.1, 120.6, 124.3, 126.1, 126.7, 127.6, 129.1, 129.2, 130.2, 

134.5, 136.2, 145.3, 152.9, 155.7, 156.6, 158.3, 176.1; HRMS calc. for C23H13NO5 [M+H]+ 

384.0866, found 384.0863. 

2-Fluoro-4-[7-methoxy-2-(m-tolyl)benzofuran-3-yl]nicotinaldehyde (75) 

O
Me

N

OMe

O
F

  Yellow solid, 116.0 mg (65%): mp 177-180 °C; 1H NMR (300 MHz, 

CDCl3) δ 2.33 (s, 3H), 4.09 (s, 3H), 6.83 (d, J = 7.9 Hz, 1H), 6.90 (d, J = 8.0 Hz, 1H), 7.19 (t, 

J = 3.2 Hz, 4H), 7.36 (d, J = 5.1 Hz, 1H), 7.47 (s, 1H), 8.46 (d, J = 5.1 Hz, 1H), 10.05 (s, 

1H); 13C NMR (75 MHz, CDCl3) δ 21.7, 56.5, 108.0, 111.5, 124.6, 124.9, 125.2, 125.2, 

127.9, 128.9, 129.0, 130.7, 131.0, 139.1, 140.5, 143.6, 145.8, 149.3, 152.3, 152.6, 153.6, 

161.4, 164.7, 187.1, 187.1 (extra peaks due to 13C-19F coupling); HRMS calc. for 

C22H16FNO3 [M+H]+ 361.1114, found 362.1187. 
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4,4-Dimethyl-2-(2-phenylbenzofuran-3-yl)cyclohex-2-enone (77) 

O

Me

Me

O

Yellow solid, 54.3 mg (34%): mp 100-106 °C; 1H NMR (400 MHz, CDCl3) 

δ 1.27 (s, 6H), 2.08 (t, J = 6.8 Hz, 2H), 2.73 (t, J = 6.8 Hz, 2H), 6.82 (s, 1H), 7.23 (t, J = 7.5 

Hz, 1H), 7.31 (d, J = 8.8 Hz, 3H), 7.33-7.48 (m, 2H), 7.52 (d, J = 8.1 Hz, 1H), 7.72 (d, J = 

7.3 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 27.8, 33.9, 35.3, 36.3, 111.3, 112.5, 115.5, 120.1, 

122.9, 124.7, 127.0, 128.6, 130.2, 130.3, 130.9, 151.9, 154.0, 160.7, 197.2; HRMS calc. for 

C22H20O2 [M+H]+ 339.1356, found 339.1348. 

5.6.4. General procedure for the synthesis of benzofurans 80 and 81 by three-

component Sonogashira/Heck type coupling. 

The 2-iodophenol (0.5 mmol) and dichlorobis(triphenylphosphine)palladium (10.5 mg, 

3 mol %) were placed in a 5 mL microwave vial and purged with argon. Dry THF (0.5 mL) 

was added and the reaction mixture was stirred until the iodophenol completely dissolved. 

Then dry triethylamine (1.0 mL) and a 3.8M solution of CuI in dry triethylamine (0.5 mL) 

were added and the mixture allowed to stir for 10 min. Then 1.2 equiv of the corresponding 

alkyne was added; the vial was capped, purged with argon and placed in the microwave 

reactor for 30 min at 25 oC. The corresponding alkene (2.5 mmol), dry acetonitrile (2 mL), 

benzoquinone (0.5 mmol), and anhydrous KOAc (1.5 mmol) were added and the reaction 

mixture was heated in a microwave reactor at 60 oC for 25 min. After cooling and standard 

aqueous work up, the reaction mixture was subject to column chromatography using ethyl 

acetate/hexane as the eluent to afford the desired products. 
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Butyl (E)-3-(2-phenylbenzofuran-3-yl)acrylate (80) 

O

CO2Bu

 Orange amorphous solid, 88.9 mg (56%): 1H NMR (400 MHz, CDCl3) δ 

1.00 (t, J = 7.4 Hz, 3H), 1.48 (h, J = 7.3 Hz, 2H), 1.67-1.76 (m, 2H), 4.26 (t, J = 6.6 Hz, 2H), 

4.14-4.41 (m, 2H), 6.71 (s, 1H), 7.31-7.41 (m, 2H), 7.52 (dt, J = 13.4, 6.9 Hz, 4H), 7.78 (d, J 

= 8.0 Hz, 2H), 7.90 (d, J = 7.5 Hz, 1H), 8.05 (d, J = 16.0 Hz, 1H); 13C NMR (100 MHz, 

CDCl3) δ 14.0, 19.5, 31.0, 64.6, 111.8, 112.8, 115.5, 119.4, 121.2, 123.9, 125.5, 126.9, 128.7, 

129.1, 129.9, 136.0, 154.7, 157.7, 167.6; HRMS calc. for C21H21O3 [M+H]+ 321.1485, found 

321.1491. 

Butyl (E)-3-[2-(cyclohex-1-en-1-yl)benzofuran-3-yl]acrylate (81) 

O

CO2Bu

  Yellow amorphous solid, 113.6 mg (70%): 1H NMR (400 MHz, CDCl3) δ 

0.99 (t, J = 7.4 Hz, 3H), 1.45 (dd, J = 14.8, 7.4 Hz, 2H), 1.68-1.82 (m, 6H), 2.32 (s, 2H), 2.52 

(s, 2H), 4.24 (t, J = 6.6 Hz, 2H), 6.33 (s, 1H), 6.56 (d, J = 16.1 Hz, 1H), 7.26-7.31 (m, 2H), 

7.45 (s, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.95 (d, J = 16.0 Hz, 1H); 13C NMR (100 MHz, 

CDCl3) δ 13.9, 19.4, 21.9, 22.5, 26.2, 26.6, 31.0, 64.4, 111.4, 111.8, 117.6, 120.9, 123.6, 

124.9, 126.8, 128.4, 134.9, 136.7, 153.9, 160.6, 167.9; HRMS calc. for C21H24O3 [M+H]+ 

324.1725, found 325.1799. 
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5.6.5. Elaboration of the bromo-containing benzofurans by Pd-catalyzed couplings 

Ethyl 4-[5-(4-methoxyphenyl)-2-phenylbenzofuran-3-yl]benzoate (82) 

O

MeO

CO2Et

 In a 2 mL microwave vial, compound 26 (42.2 mg, 0.1 mmol), 

4-methoxyphenylboronic acid (18.2 mg, 0.12 mmol), and 

tetrakis(triphenylphosphine)palladium (5.8 mg) were dissolved in a 1:1 mixture of 

EtOH/DMF (1.6 mL), then 1M aq. Cs2CO3 (0.25 mL) was added and the mixture was heated 

in a microwave reactor at 120 oC for 20 min. The mixture was diluted with satd. aq. Na2SO4 

and extracted with ethyl acetate (3 x 15 mL), dried (MgSO4) and evaporated. Column 

chromatography using ethyl acetate/ hexanes (1:10) as the eluent afforded 35.6 mg (80%) of 

product 82 as a colorless solid: mp 127-129 °C; 1H NMR (400 MHz, CDCl3) δ 1.44 (dd, J = 

7.4, 6.8 Hz, 3H), 3.85 (d, J = 0.5 Hz, 3H), 4.44 (q, J = 7.1 Hz, 2H), 6.97 (d, J = 8.2 Hz, 2H), 

7.30-7.38 (m, 3H), 7.53 (t, J = 8.1 Hz, 3H), 7.63 (dt, J = 17.1, 5.9 Hz, 6H), 8.17 (d, J = 7.7 

Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 14.6, 55.6, 61.3, 111.5, 114.4, 116.9, 117.9, 124.5, 

127.4, 128.6, 128.8, 128.9, 129.8, 129.9, 130.3, 130.4, 130.5, 134.2, 136.8, 137.9, 151.9, 

153.6, 159.1, 166.6; HRMS calc. for C30H24O4 [M+H]+ 449.1747, found 449.1675. 
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Ethyl  3-[5-((E)-3-butoxy-3-oxoprop-1-en-1-yl)-2-phenylbenzofuran-3-yl]benzoate (83) 

O

EtO2C

BuO2C

  In a 2 mL vial, compound 28 (41.5 mg, 0.1 mmol), butyl acrylate 

(17.9 µL, 0.12 mmol), palladium acetate (0.6 mg) and SPhos (4.1 mg) were dissolved in 

DMF (0.5 mL). Then triethylamine (0.12 mL) was added and the mixture was heated at 100 

oC for 24 h. The mixture was diluted with brine and extracted with ethyl ether (3 x 15 mL), 

dried (MgSO4) and evaporated. Column chromatography using ethyl acetate/ hexanes (1:10) 

as the eluent afforded 37.1 mg (81%) of product 83 as a cream colored solid: mp 77-80 °C; 

1H NMR (400 MHz, CDCl3) δ 0.96 (t, J = 7.3 Hz, 3H), 1.42 (m, 5H), 1.69 (m, 2H), 4.20 (t, J 

= 6.7 Hz, 2H), 4.41 (q, J = 7.1 Hz, 2H), 6.41 (d, J = 15.9 Hz, 1H), 7.29-7.36 (m, 3H), 7.50-

7.68 (m, 7H), 7.76 (d, J = 16.0 Hz, 1H), 8.14 (d, J = 7.7 Hz, 1H), 8.21 (s, 1H); 13C NMR 

(100 MHz, CDCl3) δ 13.9, 14.5, 19.4, 31.0, 61.4, 64.6, 111.9, 116.7, 117.4, 120.1, 125.2, 

127.2, 128.8, 129.1, 129.3, 129.5, 130.0, 130.2, 130.9, 131.8, 132.9, 134.4, 144.9, 152.2, 

155.2, 166.4, 167.4; HRMS calc. for C30H28O5 [M+H]+ 468.1937, found 469.2010. 

5.6.6. Experimental details related to the synthesis of Amurensin H, Gnetuhainin B and 

Gnetuhainin F 

1-Bromo-2-iodo-3,5-dimethoxybenzene (101) 

OMe

I
Br

MeO   Compound 101 was prepared from a commercially available compound 99 

employing an iodination procedure described for analogous compounds. 35 3,5-

Dimethoxybromobenzene (2 g, 9.2 mmol) and 1.75 g (9.2 mmol) of pTsOH were dissolved 
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in MeCN (80 mL) and 2.1 g (9.2 mmol) of NIS were added. The reaction mixture was 

allowed to stir at rt for 24 h, followed by aqueous work up and recrystallization from 

methanol. Product 101 was obtained as a colorless solid, 3.15 g (100%): 1H NMR (300 MHz, 

CDCl3) δ 3.80 (s, 3H), 3.84 (s, 3H), 6.34 (d, J = 2.6 Hz, 1H), 6.86 (d, J = 2.6 Hz, 1H). 

2-Iodo-3,5-dimethoxybenzaldehyde (102) 

OMe

I
CHO

MeO Compound 102 was prepared from commercially available 3,5-

dimethoxybenzaldehyde following the procedure described for the preparation of compound 

101. Compound 102 was obtained as a yellow solid in an 87% yield: 1H NMR (400 MHz, 

CDCl3) δ 3.82 (s, 3H), 3.87 (s, 3H), 6.62 (d, J = 2.9 Hz, 1H), 7.01 (d, J = 2.9 Hz, 1H), 10.12 

(s, 1H). 

N,N-Diethyl-3-methoxy-5-(methoxymethyl)benzamide (103) 

OMOMMeO

O NEt2

  Compound 103 was prepared in 4 steps from commercially available 3,5-

dihydroxybenzoic acid. Preparation of methyl 3-hydroxy-5-methoxybenzoate has been 

carried out according to a procedure described in the literature.36 Then methyl 5-hydroxy-3-

methylbenzoate (1.5 g, 8.2 mmol) was dissolved in dry DMF (10 mL), 0.53 g of NaH (1.5 

equiv., 12.3 mmol) was added and the solution was stirred for 10 min. After that, 1 mL of 

MOMCl (12.3 mmol) was added and the reaction mixture stirred for 2 h at rt. The reaction 

mixture was diluted with a H2O/Et2O mixture, extracted with Et2O and dried, affording 1.86 

g (100%) of the methyl 3-methoxy-5-(methoxymethyl)benzoate as a colorless oil. The 3-
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methoxy-5-(methoxymethyl)benzoate was then converted into compound 103 using a 

procedure analogous to one described in the literature.37 Compound 103 was obtained as a 

colorless oil in a 78% yield: 1H NMR (400 MHz, CDCl3) δ 1.12 (br s, 3H), 1.23 (br s, 3H), 

3.25 (br d, J = 7.8 Hz, 2H), 3.46 (s, 3H), 3.52 (br d, J = 7.7 Hz, 2H), 3.79 (s, 3H), 5.15 (s, 

2H), 6.55 (br s, 1H), 6.60 (br s, 1H), 6.63 (br s, 1H). 

Methyl 3-hydroxy-2-iodo-5-methoxybenzoate (108) 

CO2Me
I

OHMeO  Compound 108 was prepared from compound 107, synthesized following a 

previously described procedure.38 Compound 107 (1.49 g, 7.58 mmol) was dissolved in 

DMSO (20 mL) and 30% aq. H2SO4 (8 mL) was added and the reaction mixture was stirred 

for 5 min at rt. Then the reaction mixture was cooled to 0 oC and 0.79 g (11.4 mmol) of 

NaNO2 dissolved in 4 mL of H2O was added and the reaction mixture stirred at the same 

temperature for 30 min. Then 2.5 g (15 mmol) of KI were added. The reaction mixture was 

allowed to slowly reach rt and kept at that temperature for 4 h. Work-up was carried out 

according to a procedure described for an analogous process.39 After column chromatography, 

compound 108 was obtained as a dark brown oil in a 57% yield: 1H NMR (400 MHz, CDCl3) 

δ 3.79 (s, 3H), 3.93 (s, 3H), 6.23 (d, J = 2.3 Hz, 1H), 6.77 (d, J = 2.3 Hz, 1H); 13C NMR (75 

MHz, CDCl3) δ 53.3, 56.3, 79.4, 106.0, 116.3, 126.4, 162.9, 166.9, 179.1. 

Hexyl 3-hydroxy-2-iodo-5-methoxybenzoate (109)  

CO2Hex
I

OHMeO  For the preparation of compound 109, 0.5 g (2.54 mmol) of compound 108 

was treated with 1-hexanol (10 mL) and 1 g of K2CO3 and heated to 100 oC for 16 h. After 
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evaporation of the solvents, following a procedure described for the preparation of compound 

108, the desired compound 109 was obtained as a dark red amorphous solid: 1H NMR (300 

MHz, CDCl3) δ 0.75-1.00 (m, 3H), 1.21-1.44 (m, 6H), 1.59-1.78 (m, 2H), 3.77 (s, 3H), 4.29 

(t, J = 6.6 Hz, 2H), 6.17 (d, J = 2.3 Hz, 1H), 6.73 (d, J = 2.3 Hz, 1H); 13C NMR (75 MHz, 

CDCl3) δ 14.2, 22.7, 25.8, 28.6, 31.5, 56.2, 66.8, 105.9, 116.1, 126.8, 162.5, 166.8, 179.2. 

4-Bromo-2-iodo-6-methoxyphenol (118) 

OH
OMe

IBr  Compound 118 was prepared by a modification of a procedure described for 

the bromination of guaiacol. 40  2-Iodo-6-methoxyphenol (19, 0.975 g, 3.9 mmol) was 

dissolved in dry DMF (0.8 mL), the reaction mixture was cooled to 0 oC and then NBS (0.69 

g, 3.9 mmol) in DMF (0.8 mL) was added dropwise. The reaction mixture was stirred for 30 

min at 0 oC and then slowly quenched with an ice cold water/ethyl ether mixture at the same 

temperature. (The yield of the product dropped significantly when the reaction temperature 

was not kept at or below 0 oC). The organic fraction was separated, washed and dried over 

MgSO4. The reaction mixture was purified using column chromatography and the desired 

compound 118 was obtained as a brown solid (0.96 g, 75%): m.p. = 77-79 oC; 1H NMR (300 

MHz, CDCl3) δ 3.88 (s, 4H), 6.04 (s, 1H), 6.94 (d, J = 2.1 Hz, 1H), 7.43 (d, J = 2.1 Hz, 1H); 

13C NMR (75 MHz, CDCl3) δ 56.7, 81.6, 112.5, 114.3, 132.4, 145.3, 146.4. 

tert-Butyl(4-ethynyl-2-methoxyphenoxy)dimethylsilane (120a) 

OTBDMS
OMe This compound has been synthesized from 4-ethynyl-2-methoxyphenol, 

which was obtained following a literature procedure.41 The TBDMS protection of 4-ethynyl-
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2-methoxyphenol was carried out according to the procedure described in the literature for an 

analogous substrate42 and yielded compound 120a as a yellow oil in a 64% yield: 1H NMR 

(300 MHz, CDCl3) δ 0.16 (s, 6H), 0.99 (s, 9H), 3.00 (s, 1H), 3.80 (s, 3H), 6.78 (dd, J = 7.9, 

0.4 Hz, 1H), 6.96-7.04 (m, 2H). 

5-Ethynyl-2-(methoxymethyl)anisole (120b) 

OMOM
OMe   This compound has been prepared by a procedure analogous to that of 

compound 120a. The MOM protection procedure was analogous to the one employed in the 

synthesis of compound 103. This yielded compound 120b as a colorless solid in a 67% yield: 

1H NMR (300 MHz, CDCl3) δ 3.01 (s, 1H), 3.50 (s, 3H), 3.88 (s, 3H), 5.24 (s, 2H), 7.01 (d, J 

= 1.5 Hz, 1H), 7.05-7.09 (m, 2H). 

4-Ethynyl-2-methoxyphenyl acetate (120c) 

OMe
OAc

Commercially available 4-bromo-2-methoxyphenol (1.02 g, 5.0 mmol) and 

acetic anhydride (0.71 mL, 7.5 mmol) were dissolved in dichloromethane (10 mL). Then 

conc. H2SO4 (25 mg) was added and the mixture was stirred for 30 min at rt. The reaction 

was then subjected to an aqueous work-up analogous to the one described in the literature,43 

resulting in 4-bromo-2-methoxyphenyl acetate, obtained as a colorless solid, 1.21 g (99%): 

1H NMR (300 MHz, CDCl3) δ 2.31 (s, 3H), 3.82 (s, 3H), 6.90 (d, J = 8.6 Hz, 1H), 7.03-7.12 

(m, 2H). 4-Bromo-2-methoxyphenyl acetate (1.21 g, 4.9 mmol), palladium acetate (53.8 mg, 

0.24 mmol), CuI (23 mg, 0.12 mmol), and tris(tert-butyl)phosphinetetrafluoroborate (69.6 
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mg, 0.24 mmol) were dissolved in diisopropylamine (10 mL) and purged with argon. 

Trimethylsilyl acetylene (1.38 mL, 9.8 mmol) was added and the reaction mixture was stirred 

at 40 oC for 2 h. The work-up was conducted analogous to a procedure described in the 

literature.44 The desired alkyne was obtained as a colorless solid (1.28 g, 100%). The 

resulting product was dissolved in THF (29 mL) and water (3.5 mL) and a 1M solution of 

TBAF in THF (5.7 mL) was added at 0 oC. The reaction mixture was allowed to warm to 

room temperature and stirred for an additional 1 h. The volatile solvents were evaporated and 

the aqueous layer was extracted with ethyl acetate. The organic fractions were dried, 

evaporated, affording 0.74 g (80%) of the desired compound 120c as a colorless solid: m.p. = 

77-79 oC; 1H NMR (400 MHz, CDCl3) δ 2.31 (s, 3H), 3.07 (s, 1H), 3.82 (s, 3H), 6.99 (d, J = 

8.0 Hz, 1H), 7.06-7.12 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 20.7, 56.0, 77.3, 83.2, 116.0, 

120.8, 123.0, 125.1, 140.5, 150.9, 168.8. 

1-Iodo-3,5-bis(tert-butyldimethylsiloxy)benzene (121a) 

ITBDMSO

OTBDMS  This compound has been prepared from 3,5-dihydroxyiodobenzene 

following a TBDMS-protection procedure analogous to the one employed in the synthesis of 

compound 120a, yielding compound 121a as a colorless oil in a 91% yield: 1H NMR (400 

MHz, CDCl3) δ 0.20 (s, 12H), 0.98 (s, 18H), 6.29 (d, J = 2.1 Hz, 1H), 6.84 (d, J = 2.2 Hz, 

2H); 13C NMR (100 MHz, CDCl3) δ -4.2, 18.4, 25.9, 93.7, 112.2, 123.1, 157.1. 
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1-Iodo-3,5-bis(methoxymethoxy)benzene (121b) 

IMOMO

OMOM   This compound has been prepared from 3,5-dihydroxyiodobenzene following 

a MOM-protection procedure analogous to the one employed in the synthesis of compound 

103, yielding compound 121b as a colorless oil in a 41% yield: 1H NMR (300 MHz, CDCl3) 

δ 3.46 (s, 6H), 5.12 (s, 4H), 6.68 (td, J = 2.2, 0.5 Hz, 1H), 7.06 (dd, J = 2.2, 0.5 Hz, 2H). 

3,5-Diacetoxyiodobenzene (121c) 

I

OAc

AcO

3,5-Dihydroxyiodobenzene (0.27 g, 1.16 mmol) was dissolved in 

dichloromethane (3 mL); Ac2O (0.33 mL, 3.49 mmol) and H2SO4 (1.2 mg) were added and 

the mixture was stirred at rt for 1 h. Then conc. aq. NaHCO3 solution was added at 0 oC and 

the mixture was allowed to warm up to room temperature. The organic phase was collected, 

dried (MgSO4) and evaporated. Compound 121c was obtained as a colorless solid (0.34 g, 

91%) and used without further purification: m.p. = 77-80 °C; 1H NMR (400 MHz, CDCl3) δ 

2.28 (s, 3H), 6.92 (t, J = 2.0 Hz, 1H), 7.36 (d, J = 2.0 Hz, 1H); 13C NMR (100 MHz, CDCl3) 

δ 21.3, 69.5, 92.7, 115.6, 128.4, 151.3, 168.8; HRMS calc. for C10H9IO4 [M+Na]+ 342.9438, 

found 342.9441. 

 

 

 

 



www.manaraa.com

 177 

2-(4-Acetoxy-3-methoxyphenyl)-5-bromo-3-(3,5-diacetoxyphenyl)-7-

methoxybenzofuran (113c) 

O

Br

OMe

AcO
OAc

OAc

OMe Compound 113c was synthesized following the general procedure 

for a three-component Sonogashira/Cacchi type cyclization and was obtained as a brown 

amorphous solid (340.6 mg, 60%): 1H NMR (400 MHz, CDCl3) δ 2.29 (s, 6H), 2.31 (s, 3H), 

3.67 (s, 3H), 4.03 (s, 3H), 6.95 (s, 1H), 7.00 (s, 1H), 7.03 (d, J = 8.3 Hz, 1H), 7.09 (d, J = 1.2 

Hz, 2H), 7.15 (s, 1H), 7.21 (s, 1H), 7.35 (d, J = 8.3 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 

20.9, 21.3, 55.9, 56.6, 110.9, 111.0, 111.1, 114.9, 115.6, 115.7, 116.6, 119.8, 120.6, 123.3, 

128.2, 132.6, 134.2, 140.4, 142.2, 145.7, 151.2, 151.5, 151.8, 168.9; HRMS calc. for 

C28H24BrO9 [M+H]+ 583.0525, found 583.0598. 

4-(1,3-Dioxolan-2-yl)-2-iodo-6-methoxyphenol (122) 

I

OH
OMe

O

O

 Compound 122 was prepared following a procedure described for an 

analogous reaction.45  5-Iodovanillin (1.0 mmol) and ethylene glycol (5.0 mmol) were 

dissolved in toluene. Then acidic aluminum oxide was added and the resulted mixture was 

refluxed for 24 h. After cooling, the mixture was filtered, washed with 

dichloromethane/water and the organic phase was dried (MgSO4) and evaporated. Column 

chromatography using ethyl acetate/hexanes (1:3) as the eluent afforded 196 mg (62%) of 

product 122 as a colorless oil: 1H NMR (400 MHz, CDCl3) δ 3.91 (s, 3H), 3.97-4.06 (m, 2H), 
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4.08-4.16 (m, 2H), 5.69 (s, 1H), 6.16 (s, 1H), 6.96 (s, 1H), 7.42 (s, 1H); 13C NMR (101 MHz, 

CDCl3) δ 56.5, 65.5, 80.9, 95.7, 103.0, 108.9, 129.1, 131.6, 146.2, 146.6. 

 2-(4-Acetoxy-3-methoxyphenyl)-3-(3,5-diacetoxyphenyl)-5-(1,3-dioxolan-2-yl)-7-

methoxybenzofuran (123) 

O
OMe

O

O

AcO
OAc

OAc

OMe  Compound 123 was synthesized following the general 

procedure for the three-component Sonogashira/Cacchi type cyclization and was obtained as 

a bright yellow oil (340.6 mg, 63%): 1H NMR (400 MHz, CDCl3) δ 2.28 (s, 6H), 2.30 (s, 3H), 

3.67 (s, 3H), 4.00-4.05 (m, 2H), 4.07 (s, 3H), 4.14-4.23 (m, 2H), 5.84 (s, 1H), 6.97-7.05 (m, 

3H), 7.12 (d, J = 2.2 Hz, 2H), 7.19 (d, J = 13.7 Hz, 2H), 7.37 (dd, J = 8.3, 2.0 Hz, 1H); 13C 

NMR (100 MHz, CDCl3) δ 20.8, 21.3, 55.9, 56.4, 65.5, 104.2, 105.5, 110.9, 111.1, 115.4, 

116.5, 117.6, 119.7, 120.7, 123.2, 128.6, 131.2, 134.1, 134.8, 140.2, 143.8, 145.4, 151.1, 

151.7, 168.9, 168.9; HRMS calc. for C31H29O11 [M+H]+ 577.1704, found 577.1711. 

2-(4-Acetoxy-3-methoxyphenyl)-3-(3,5-diacetoxyphenyl)-5-formyl-7-

methoxybenzofuran (114) 

O
OMe

O

AcO
OAc

OAc

OMe  Compound 114 (85.4 mg, 0.155 mmol) was dissolved in THF 

(0.3 mL), 10% aq. HCl (62 µL) was added at 0 oC, and the reaction mixture was stirred for 

20 min. An aqueous work-up was conducted according to a procedure described in the 
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literature.46 Compound 114 was obtained as a yellow oil (75.8 mg, 92%): 1H NMR (400 

MHz, CDCl3) δ 2.29 (s, 6H), 2.30 (s, 3H), 3.67 (s, 3H), 4.08 (s, 3H), 6.99-7.06 (m, 2H), 7.14 

(d, J = 2.1 Hz, 2H), 7.18 (s, 1H), 7.37 (dd, J = 8.3, 1.8 Hz, 1H), 7.40 (s, 1H), 7.61 (s, 1H), 

9.96 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 20.9, 21.3, 55.9, 56.4, 105.1, 111.1, 115.7, 

116.7, 118.5, 119.8, 120.6, 123.4, 127.9, 131.5, 133.9, 133.9, 140.6, 146.2, 146.8, 151.3, 

151.9, 152.2, 168.9, 191.8, 191.9; HRMS calc. for C29H25O10 [M+H]+ 533.1442, found 

533.1443. 

3,5-Diacetoxybenzyl diethyl phosphonate (117a) 

PO(OEt)2

OAc

AcO  This compound has been prepared in 4 steps starting from 

commercially available 3,5-dihydroxybenzyl alcohol. Acetylation of the 3,5-dihydroxybenzyl 

alcohol has been carried out according to a procedure described for an analogous 

transformation,47 which yielded 3,5-diacetoxybenzyl alcohol as a colorless oil in a 65% yield: 

1H NMR (300 MHz, CDCl3) δ 2.25 (s, 6H), 4.56 (s, 2H), 6.79 (d, J = 2.1 Hz, 1H), 6.94 (d, J 

= 2.4 Hz, 2H).  This compound has been treated with PBr3, according to a procedure 

described in the literature,48 which yielded 3,5-diacetoxybenzyl bromide as a colorless oil in 

a 53% yield. 3,5-Diacetoxybenzyl bromide was then reacted with P(OEt)3, following a 

procedure described in the literature for an analogous transformation,49 which yielded 

compound 117a as a colorless oil in quantitative yield: 1H NMR (300 MHz, CDCl3) δ 1.25 (t, 

J = 7.0 Hz, 6H), 2.27 (s, 6H), 3.13 (d, J = 21.7 Hz, 2H), 3.92-4.05 (m, 4H), 6.83 (d, J = 2.1 

Hz, 1H), 6.88-7.04 (m, 2H).   
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3,5-Di(methoxymethoxy)benzyl diethyl phosphonate (117b) 

PO(OEt)2

OMOM

MOMO   This compound has been prepared from methyl 3,5-

dihydroxybenzoate following a MOM-protection procedure analogous to the one employed 

in the synthesis of compound 103, affording methyl 3,5-di(methoxymethoxy)benzoate as a 

colorless oil in a 60% yield: 1H NMR (300 MHz, CDCl3) δ 3.48 (s, 6H), 3.90 (s, 3H), 5.19 (s, 

4H), 6.91 (t, J = 2.3 Hz, 1H), 7.37 (dd, J = 2.4, 1.3 Hz, 2H). Then 1.25 g (4.88 mmol) of this 

compound was dissolved in dry DME (9 mL), 0.92 g of LiAlH4 was added, and the reaction 

mixture was stirred until complete conversion of the starting material was observed (by TLC 

analysis). After quenching with methanol (4.5 mL) and carrying out an aqueous work-up, 

1.05 g (95%) of 3,5-di(methoxymethoxy)benzyl alcohol was obtained as a colorless oil: 1H 

NMR (300 MHz, CDCl3) δ 3.47 (s, 6H), 4.63 (s, 2H), 5.16 (s, 4H), 6.65 (t, J = 2.3 Hz, 1H), 

6.71 (dd, J = 2.1, 0.6 Hz, 2H). 3,5-Di(methoxymethoxy)benzyl alcohol was then converted 

into compound 117b following a literature procedure described for analogous substrates,50 

which yielded compound 117b as a colorless oil in a 75% yield: 1H NMR (400 MHz, CDCl3) 

δ 1.26 (t, J = 7.1 Hz, 6H), 3.08 (d, J = 21.7 Hz, 2H), 3.45 (s, 6H), 4.03 (dd, J = 7.9, 7.0 Hz, 

4H), 5.13 (s, 4H), 6.63 (m, 3H). 

(E)-(3,5-dihydroxystyryl)boronic acid (116) 

OH

HO B(OH)2  This compound has been prepared from commercially available (E)-2-

(3,5-dimethoxystyryl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, 0.5 g (1.72 mmol) of which 
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was dissolved in CH2Cl2 (5 mL), the reaction mixture cooled to -78 oC, and then treated with 

neat BBr3 (4 equiv, 0.66 mL). The reaction mixture was stirred at -78 oC for 1 h, then 

allowed to warm to room temperature and stirred for an additional 1 h. After quenching the 

reaction mixture with H2O, extraction with ethyl acetate, and flash column purification, using 

ethyl acetate as the eluent resulted in compound 116 being obtained as a brown oil in a 40% 

yield: 1H NMR (400 MHz, CDCl3) δ 4.93 (s, 4H), 6.22 – 6.33 (m, 2H), 6.49 (d, J = 2.2 Hz, 

2H), 7.19 (d, J = 18.1 Hz, 1H).  

3,5-Diacetoxystyrene (115)51 

OAc

AcO  This compound has been prepared following the method described in the 

literature.51 1H NMR (400 MHz, CDCl3) δ 2.28 (s, 6H), 5.31 (d, J = 10.8 Hz, 1H), 5.73 (d, J 

= 17.5 Hz, 1H), 6.64 (dd, J = 17.5, 10.9 Hz, 1H), 6.82 (s, 1H), 7.02 (s, 2H). 
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CHAPTER 6 

 

One-pot Synthesis of 1-Alkyl-1H-indazoles from 1,1-Dialkylhydrazones via  
Aryne Annulation 
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6.1. ABSTRACT 

 The reaction of readily accessible 1,1-dialkylhydrazones with commercially available 

o-(trimethylsilyl)aryl triflates provides a direct one-step route to pharmaceutically important 

1-alkylindazoles. The products are obtained in high yields by one-pot NCS-

chlorination/aryne annulation or Ac2O-acylation/deprotection/aromatization protocols. 

 

6.2. INTRODUCTION 

 1H-Indazoles represent an important class of heterocyclic compounds that exhibit a 

wide range of biological and pharmaceutical activities, 1  including anti-inflammatory, 2 

antitumor,3 and anti-HIV4 activity among others. Selected examples of 1-alkyl-1H-indazoles 

with notable pharmacological activities include granisetron, a serotonin 5-HT3 receptor 

antagonist used to treat nausea and vomiting after chemotherapy;5 lonidamine, used for the 
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treatment of brain tumors;6 and CL-958, an antitumor agent, which is currently in clinical 

evaluation (Figure 1).7 
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Figure 1. Biologically active 1-alkyl-1H-indazoles. 

 Various methods for the synthesis of the 1H-indazole core have been developed.8 

However, most of them employ harsh reaction conditions, thus have limited the scope and 

applicability. Recently, several methodologies have been reported that involve aryne 

intermediates in [3 + 2] cycloaddition reactions with diazo compounds, 9  N-

tosylhydrazones,10,11 and in situ generated nitrile imines (Scheme 1).12  

Scheme 1. Known aryne-madiated processed for the syntehsis of 1H-indazoles 
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 These methods afford 1H-indazoles, 1-acyl-1H-indazoles or 1-aryl-1H-indazoles under 

mild reaction conditions. However, no aryne-annulation approach to 1-alkyl-1H-indazoles 

has yet been reported. 

 

6.3. RESULTS AND DISCUSSION 

6.3.1. Background 

Larock group has previously shown that the reaction of a variety of N,N-

dialkylhydrazones with arynes seemingly proceeds through a cyclic intermediate 3 that 

subsequently undergoes ring opening to form the corresponding o-(dialkylamino)aryl imines 

4 (Scheme 2).13 

Scheme 2. Unusual entry of the mesityl-derived hydrazone 
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 An unexpected result was obtained in the case of the mesityl-substituted substrate, 

where the corresponding indazole 5 was formed, albeit in only a 33% yield (Scheme 3).  

Scheme 3. Unusual entry of the mesityl-derived hydrazone 
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In order to improve the scope and efficiency of this process, we envisioned that one can 

retain the cyclic nature of the intermediate 9 in two complementary ways (Scheme 4), 

namely by having a nearby leaving group (path a) or trapping the amide 9 with a trapping 

agent (path b).14 

Scheme 4. Two pathways towards indazoles 
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6.3.2. One-pot protocol employing NCS 

To our delight, we found that the reaction of N,N-dimethylhydrazone chloride 7 (R1 = 

Ph, R2 = Me) with benzyne 2, generated in situ from o-(trimethylsilyl)aryl triflate15 8 in 

presence of fluoride source, proceeds smoothly to afford indazole 11 in an 81% yield 

(Scheme 4, path a). 

 However, it did not prove to be efficient to purify and isolate the labile starting 

materials 7. We promptly investigated the possibility of a one-pot procedure wherein the 

chlorine-containing hydrazones are not isolated, but generated in situ from 1,1-

dialkylhydrazones 6 and NCS and further reacted with the o-(trimethylsilyl)aryl triflate 8 in 
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the presence of a fluoride source.16 To our delight, the desired indazole 11 was obtained in a 

78% yield. The optimal reaction conditions were found to be 1.1 equiv. of NCS per 1 equiv. 

of the hydrazone 6, and a slight excess of the substrate 6 (1.2 equiv) per 1 equiv. of the aryne 

precursor 8. Both steps conveniently proceed in acetonitrile at 65 °C. 

 With the optimal conditions in hand, we next examined the scope and limitations of this 

method (Table 1). A range of hydrazones was studied first. Aryl, alkenyl and heteroaryl 

hydrazones afforded the corresponding indazoles 15a-i in 32-78% yields. Electron-poor aryl 

hydrazones afforded the corresponding indazoles 15d and 15e in lower yields (59 and 45% 

respectively). The presence of a cyano group, terminal alkyne moiety, and an ortho-bromo 

substituent was tolerated under these reaction conditions. Unfortunately, hydrazones with R1 

= 4-nitrophenyl, 2-furyl, 2,3,5-trimethoxyphenyl and alkyl groups did not afford the desired 

indazoles, seemingly due to complications during the NCS chlorination step.  

  Other aryne precursors were also tested. Symmetrical naphthalyne and 

dimethoxybenzyne precursors afforded the desired indazoles 15j and 15k in good 63 and 

62% yields respectively. The unsymmetrical 3-methoxybenzyne precursor provided 

exclusively the 4-OMe regioisomer 15l in a 64% yield. The structure of the product 15l is 

consistent with the proposed mechanism (Scheme 4, path a).17 
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Table 1.  Reaction Scope 

N
N

R2

R1

R1

N
N
R2

R2
1. NCS, CH3CN, 65 oC, 1 h

R3
R3

H
2.

CsF, CH3CN, 65 oC, 10 h

Ph

NN
Me

15h (32%)

NN
Me

15a (78%)

N
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N
Me
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N
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N
Me

NN
Me
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15i (60%)

NN
Me
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NN
Me
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NN
Me

Br

N
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N
Me

15d (59%)

15g (65%)

NN
Me
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NN
Me

15k (62%)

MeO

MeO

NN
Me

15l (64%)

OMe

6 14

TMS

OTf 15

 

 When cyclic hydrazones derived from N-aminopiperidine and N-aminomorpholine were 

employed in this one-pot process, the interesting products 15m and 15n were obtained, both 

in a 60% yield (Scheme 5). In these cases, the initially formed indazoliumsalt 16 undergoes 
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ring-opening by the succinimide moiety present in the reaction media from the chlorination 

step.18 

Scheme 5. Reaction of cyclic hydrazones 
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6.3.3. One-pot protocol employing Ac2O/N2H4 

In order to overcome some limitations of the methodology using NCS, we also studied 

the reaction between the hydrazone 6a (R1 = Ph) and the benzyne precursor 8 in the presence 

of acetic anhydride (Scheme 2, path b). We were pleased to observe formation of the 

corresponding trapped product 17a (R1 = Ph) in an 83% yield, which could also be 

subsequently deacetylated and aromatized in situ to produce the indazole 15a (overall yield 

for the 2 steps of 63%). After some optimization studies, we were able to obtain the latter in 

an 83% overall yield without isolating the intermediate product 17a. The scope of this 

process is summarized in Table 2. 

 

 

 

 

 



www.manaraa.com

 192 

Table 2.  Reaction Scope  for Ac2O/N2H4 protocol 

NN
Me

15a (83%)

NN
Me
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15i (39%)
(56% using Boc2O)

R1 H

N
NMe2 8, CsF, Ac2O
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N
N
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N
N

Me

R117 15

N2H4(aq.)
100 oCAc

NN
Me

15r (29%)

N

NN
Me

15p (91%)

NN
Me

15q (76%)

NN
Me

15o (80%)

Me

Me
Me

OMe

OMe
MeO

Ph

6

 

 

Gratifyingly, a variety of substituents in the R1 position of the hydrazone are well 

tolerated. For example, the product 15o is obtained in an 80% yield. The electron-rich 

hydrazones, that failed to react efficiently under our NCS-mediated protocol, have afforded 

the corresponding indazoles 15p and 15q in excellent yields (91 and 76%), despite their 

steric encumbrance. On the other hand, electron-deficient hydrazones, such as 2-thiophenyl 

and 3-pyridyl hydrazones, provide the corresponding products 15i and 15r in only 39 and 

29% yields respectively. 
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6.4. CONCLUSIONS 

 In summary, 1-alkyl-1H-indazoles can be prepared from arynes and hydrazones in high 

yields by one-pot NCS-chlorination/aryne annulation protocol. This chemistry provides a 

convenient route to 1-alkyl-1H-indazoles from readily available N,N-dimethylhydrazones 

and presents a valuable extention of the known synthetic routes to indazoles. 
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6.6. EXPERIMENTAL 

6.6.1. General remarks 

 The 1H and 13C NMR spectra were recorded at 300 and 75.5 MHz or 400 and 100 

MHz, respectively. Chemical shifts are reported in δ units (ppm) by assigning the TMS 

resonance in the 1H NMR spectrum as 0.00 ppm and the CDCl3 resonance in the 13C NMR 

spectrum as 77.23 ppm. All coupling constants (J) are reported in Hertz (Hz). All 

commercial reagents were used directly as obtained. Thin layer chromatography was 

performed using commercially prepared 60-mesh silica gel plates, and visualization was 

effected with short wavelength UV light (254 nm). All melting points were obtained using an 

EZ-Melt automated melting point apparatus and are uncorrected. High resolution mass 
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spectra (HRMS) were obtained using an Agilent QTOF 6540 mass spectrometer (ESI at a 

voltage of 70 eV). All mass spectra (MS) were obtained using a GCT-Agilent 6890 gas 

chromatograph/ mass spectrometer (EI at a voltage of 70 eV). All IR spectra were obtained 

using a Nicolet 380 FT-IR apparatus. 

6.6.2. Preparation of hydrazones 6 

The starting hydrazones were prepared according to the procedure described in our 

recent communication.13 The characterization of hydrazones 6a-6c, 6g, 6h, 6j-6m, 6p and 6r 

can be found therein. 

6.6.3. Data for the crude N',N'-dimethylbenzohydrazonoyl fluoride (7a’) 

F

N
N

 1H NMR (400 MHz, CD3CN) δ 2.83 (s, 6H), 7.44 (m, 3H), 7.73 (d, J = 7.9 

Hz, 2H) (succinimide peak: δ 2.60); 19F NMR (400 MHz, CD3CN) δ -66.6; MS (EI) m/z (%) 

166 (M+, 100%), 103 (20%), 77 (19%), 42 (21%); HRMS (ESI) calcd for [M+H]+ C9H12FN2 

167.0907, found 167.0975. 

6.6.4. General procedure for the preparation of indazoles 15 by a one-pot NCS 

procedure. [1-Methyl-3-phenyl-1H-indazole19 (15a) as an example] 

NN
H3C

To a solution of benzaldehyde dimethylhydrazone 6a (46 mg, 0.31 mmol, 

1.25 equiv.) in 1 mL of acetonitrile under an inert atmosphere N-chlorosuccinimide (46 mg, 



www.manaraa.com

 195 

0.34 mmol, 1.38 equiv) was added and the reaction mixture was stirred for 1 h at 65 °C. Then 

an additional 4 mL of acetonitrile, together with CsF (114 mg, 0.75 mmol, 3 equiv.) and o-

(trimethylsilyl)phenyl triflate (61 µL, 0.25 mmol, 1.0 equiv.) were added and the reaction 

mixture was stirred at 65 °C for an additional 10 h (monitored by TLC). After cooling to 

room temperature, the reaction mixture was filtered through a short column of celite and 

concentrated under vacuum. The crude reaction mixture was subjected to column 

chromatography using ethyl acetate : hexanes (1:10) as eluent and afforded 40.6 mg (78 %) 

of product 15a, gray solid: mp 81-83 °C; 1H NMR (400 MHz, CDCl3) δ 4.13 (s, 3H), 7.21 (s, 

1H), 7.42 (t, J = 4.3 Hz, 3H), 7.52 (t, J = 7.6 Hz, 2H), 7.99 (d, J = 8.3 Hz, 2H), 8.04 (d, J = 

8.2 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 35.72, 109.38, 121.09, 121.53, 121.81, 126.45, 

127.57, 127.99, 128.98, 133.89, 141.63, 143.91; MS (EI) m/z (%) 208 (M+, 100%), 77 

(10%); HRMS (EI) calcd for [M+H]+ C14H13N2 209.1073, found 209.1075; IR (CH2Cl2, cm-

1) 2939 (m), 1617 (s), 1495 (s), 1351 (s). 

1-Methyl-3-(naphthalen-2-yl)-1H-indazole (15b) 

NN
H3C

   Product 15b was isolated as a yellow oil in a 76% yield: 1H NMR 

(400 MHz, CDCl3) δ 4.19 (s, 3H), 7.27 (ddd, J = 7.7, 5.2, 2.0 Hz, 1H), 7.46 (d, J = 5.2 Hz, 

2H), 7.53 (td, J = 5.2, 4.6, 2.1 Hz, 2H), 7.90 (d, J = 8.6 Hz, 1H), 7.98 (t, J = 7.9 Hz, 2H), 

8.17 (d, J = 8.4 Hz, 2H), 8.44 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 35.81, 109.47, 121.25, 

121.61, 121.95, 125.67, 126.19, 126.45, 126.52, 127.94, 128.42, 128.65, 131.37, 133.14, 
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133.82, 141.69, 143.73; MS (EI) m/z (%) 258 (M+, 100%); HRMS (EI) calcd for [M+H]+ 

C15H15N2O 259.123, found 259.1234; IR (CH2Cl2, cm-1) 2937 (m), 1615 (s), 1494 (m). 

3-(4-Methoxyphenyl)-1-methyl-1H-indazole (15c) 

N

OCH3

N
H3C

 Product 15c was isolated as a yellow oil in a 72% yield: 1H 

NMR (400 MHz, CDCl3) δ 3.88 (s, 3H), 4.11 (s, 3H), 7.05 (dd, J = 9.0, 2.2 Hz, 2H), 7.20 

(ddd, J = 7.9, 5.5, 2.3 Hz, 1H), 7.41 (d, J = 5.4 Hz, 2H), 7.90 (dd, J = 9.0, 2.2 Hz, 2H), 7.99 

(d, J = 8.2 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 35.66, 55.53, 109.29, 114.42, 120.83, 

121.52, 121.64, 126.38, 126.50, 128.74, 141.53, 143.73, 159.55; MS (EI) m/z (%) 238 (M+, 

100%), 223 (61%), 195 (22%); HRMS (EI) calcd for [M+H]+ C15H15N2O 239.1179, found 

239.1179; IR (CH2Cl2, cm-1) 3007 (w), 2938 (m), 2838 (m), 1614 (s), 1530 (s), 1035 (s). 

Methyl 4-(1-methyl-1H-indazol-3-yl)benzoate (15d) 

N

CO2Me

N
H3C

 Product 15d was isolated as a yellow solid in a 59% yield: mp  

117-121 °C; 1H NMR (400 MHz, CDCl3) δ 3.95 (s, 3H), 4.14 (s, 3H), 7.25 (dt, J = 8.1, 4.2 

Hz, 1H), 7.44 (d, J = 3.5 Hz, 2H), 8.04 (dd, J = 11.3, 8.5 Hz, 3H), 8.16 (d, J = 8.5 Hz, 2H); 

13C NMR (100 MHz, CDCl3) δ 35.91, 52.34, 109.61, 121.29, 121.65, 121.82, 126.63, 127.12, 

129.24, 130.30, 138.38, 141.68, 142.57, 167.17; MS (EI) m/z (%) 266 (M+, 100%), 235 
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(61%), 208 (12%), 192 (13%); HRMS (EI) calcd for [M+H]+ C16H15N2O2 267.1128, found 

267.1133; IR (CH2Cl2, cm-1) 2951 (m), 1720 (s), 1611 (s), 1114 (s). 

4-(1-Methyl-1H-indazol-3-yl)benzonitrile (15e) 

N

CN

N
H3C

  Product 15e was isolated as a light yellow solid in a 45% yield: 

mp 144-147 °C; 1H NMR (400 MHz, CDCl3) δ 4.15 (s, 3H), 7.25-7.30 (m, 1H), 7.46 (d, J = 

3.6 Hz, 2H), 7.74-7.79 (m, 2H), 7.99 (d, J = 8.3 Hz, 1H), 8.09 (d, J = 8.5 Hz, 2H); 13C NMR 

(100 MHz, CDCl3) δ 36.02, 109.82, 111.08, 119.26, 120.96, 121.68, 122.02, 126.81, 127.63, 

132.79, 132.96, 138.50, 141.61, 141.76 (the latter peak possibly appears due to the 

conformational restriction at the C-3 carbon of the indazole); MS (EI) m/z (%) 233 (M+, 

100%); HRMS (EI) calcd for [M+H]+ C15H12N3 234.1026, found 234.1025; IR (CH2Cl2, cm-

1) 2941 (w), 2228 (s), 1610 (s). 

3-(4-Ethynylphenyl)-1-methyl-1H-indazole (15f) 

NN
H3C

  Product 15f was isolated as a yellow solid in a 67% yield: mp 

106-108 °C; 1H NMR (400 MHz, CDCl3) δ 3.16 (s, 1H), 4.13 (s, 3H), 7.18-7.28 (m, 1H), 

7.43 (s, 2H), 7.63 (d, J = 8.2 Hz, 2H), 7.95 (d, J = 8.2 Hz, 2H), 8.00 (d, J = 8.2 Hz, 1H); 13C 

NMR (100 MHz, CDCl3) δ 35.84, 78.04, 83.91, 109.53, 115.50, 121.33, 121.42, 121.70, 
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126.57, 127.20, 132.76, 134.36, 141.63, 142.87; MS (EI) m/z (%) 232 (M+, 100%); HRMS 

(EI) calcd for [M+H]+ C16H13N2 233.1073, found 233.1078; IR (CH2Cl2, cm-1) 3296 (s), 2940 

(w), 2107 (w), 1615 (m), 1493 (m). 

3-(2-Bromophenyl)-1-methyl-1H-indazole (15g) 

NN
H3C

Br

 Product 15g was isolated as a yellow oil in a 65% yield: 1H NMR (400 

MHz, CDCl3) δ 4.15 (s, 3H), 7.18 (ddd, J = 7.8, 5.6, 2.1 Hz, 1H), 7.30 (td, J = 7.7, 1.7 Hz, 

1H), 7.38-7.48 (m, 3H), 7.55 (dd, J = 7.6, 1.7 Hz, 1H), 7.68 (d, J = 8.2 Hz, 1H), 7.72-7.77 

(m, 1H); 13C NMR (100 MHz, CDCl3) δ 35.86, 109.31, 120.76, 122.13, 122.66, 123.54, 

126.49, 127.47, 129.91, 132.61, 133.46, 134.54, 140.78, 143.93; MS (EI) m/z (%) 288 

([M+2]+, 90%), 286 (M+, 100%), 206 (15%); HRMS (EI) calcd for [M+H]+ C14H12 BrN2 

287.0178, found 287.0183; IR (CH2Cl2, cm-1) 2939 (m), 1617 (m), 1495 (m), 1027 (m). 

(E)-1-Methyl-3-styryl-1H-indazole (15h) 

Ph

NN
H3C

 Product 15h was isolated as a light brown solid in a 32% yield: mp 72-

75 °C; 1H NMR (400 MHz, CDCl3) δ 4.09 (s, 3H), 7.24 (s, 2H), 7.40 (dd, J = 9.5, 6.6 Hz, 

3H), 7.43-7.54 (m, 2H), 7.60 (d, J = 7.4 Hz, 2H), 8.02 (d, J = 8.2 Hz, 1H); 13C NMR (100 

MHz, CDCl3) δ 35.76, 109.43, 120.19, 121.13, 121.20, 122.21, 126.64, 126.68, 127.91, 

128.93, 130.45, 137.61, 141.46, 142.29; MS (EI) m/z (%) 234 (M+, 90%), 233 ([M-H]+, 
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100%), 218 (48%); HRMS (EI) calcd for [M+H]+ C16H15N2 235.1230, found 235.123; IR 

(CH2Cl2, cm-1) 3082 (w), 2937 (m), 1614 (m), 1493 (m), 962 (s). 

1-Methyl-3-(thiophen-2-yl)-1H-indazole (15i) 

NN
H3C

S

 Product 15i was isolated as a yellow-green oil in a 60% yield: 1H 

NMR (300 MHz, CDCl3) δ 4.10 (s, 3H), 7.17 (dd, J = 4.9, 3.7 Hz, 2H), 7.20-7.26 (m, 2H), 

7.33-7.37 (m, 2H), 7.38-7.46 (m, 3H), 7.63 (d, J = 3.6 Hz, 1H), 8.03 (d, J = 8.2 Hz, 1H); 13C 

NMR (75 MHz, CDCl3) δ 35.75, 109.44, 121.29, 121.32, 124.46, 124.94, 126.77, 127.82, 

136.23, 138.98, 141.48; MS (EI) m/z (%) 214 (M+, 100%), 199 (25%); HRMS (EI) calcd for 

[M+H]+ C12H11N2S 215.0637, found 215.0640; IR (CH2Cl2, cm-1) 3397 (m), 2948 (m), 2842 

(m), 2798 (m), 1595 (m), 1494 (m). 

1-Methyl-3-phenyl-1H-benzo[f]indazole (15j) 

NN
H3C

  Product 15j was isolated as a yellow solid in a 63% yield: mp 

137-139 °C; 1H NMR (400 MHz, CDCl3) δ 4.20 (s, 3H), 7.33-7.39 (m, 1H), 7.46 (q, J = 6.6 

Hz, 2H), 7.58 (t, J = 7.6 Hz, 2H), 7.78 (s, 1H), 7.94 (d, J = 8.5 Hz, 1H), 7.99 (d, J = 8.5 Hz, 

1H), 8.10 (d, J = 7.3 Hz, 2H), 8.57 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 35.87, 104.18, 

120.32, 123.15, 123.52, 126.22, 127.60, 127.77, 128.19, 129.09, 129.45, 132.57, 133.71, 
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140.52, 143.73; MS (EI) m/z (%) 258 (M+, 100%); HRMS (EI) calcd for [M+H]+ C18H14N2 

259.1230, found 259.1224. 

5,6-Dimethoxy-1-methyl-3-phenyl-1H-indazole (15k) 

NN
H3C

MeO

MeO  Product 15k was isolated as a yellow solid in a 62% yield: mp 

128-130 °C; 1H NMR (400 MHz, CDCl3) δ 3.95 (s, 3H), 3.99 (s, 3H), 4.06 (s, 3H), 6.74 (s, 

1H), 7.28 (s, 1H), 7.37 (t, J = 7.8 Hz, 1H), 7.49 (t, J = 7.6 Hz, 2H), 7.89 (d, J = 7.3 Hz, 2H); 

13C NMR (100 MHz, CDCl3) δ 35.84, 56.25, 56.46, 90.65, 100.77, 114.67, 127.29, 127.73, 

128.97, 134.08, 137.28, 143.19, 146.53, 150.82; MS (EI) m/z (%) 268 (M+, 100%), 253 

(62%), 210 (17%); HRMS (EI) calcd for [M+H]+ C16H17N2O2 269. 1285, found 269.1290; IR 

(CH2Cl2, cm-1) 3008 (w), 2937 (m), 2832 (m), 1713 (s), 1630 (s), 1206 (s). 

4-Methoxy-1-methyl-3-phenyl-1H-indazole (15l) 

NN
H3C

OCH3  Product 15l was isolated as a yellow solid in a 64% yield: mp 96-97 

°C; 1H NMR (400 MHz, CDCl3) δ 3.90 (s, 3H), 4.09 (s, 3H), 6.52 (d, J = 7.7 Hz, 1H), 6.99 

(d, J = 8.4 Hz, 1H), 7.31-7.42 (m, 2H), 7.45 (t, J = 7.4 Hz, 2H), 7.93 (d, J = 8.4 Hz, 2H); 13C 

NMR (100 MHz, CDCl3) δ 35.86, 55.39, 99.92, 101.98, 112.91, 127.71, 127.78, 127.96, 

129.70, 134.15, 143.57, 144.55, 154.72; MS (EI) m/z (%) 238 (M+, 100%), 223 (18%), 208 
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(20%);HRMS (EI) calcd for [M+H]+ C15H15N2O 239.1179, found 239.1179; IR (CH2Cl2, cm-

1) 2937 (m), 2840 (w), 1614 (s), 1584 (s), 1507 (s), 1358 (s), 1182 (m). 

1-[2-(2-(3-Phenyl-1H-indazol-1-yl)ethoxy)ethyl]pyrrolidine-2,5-dione (15m) 

Ph

NN

O
N

O

O

 Product 15m was isolated as a colorless oil in a 60% yield: 1H 

NMR (300 MHz, CDCl3) δ 2.39 (s, 4H), 3.53-3.60 (m, 2H), 3.60-3.66 (m, 2H), 3.95 (t, J = 

5.2 Hz, 2H), 4.56 (t, J = 5.3 Hz, 2H), 7.16-7.25 (m, 1H), 7.38-7.46 (m, 2H), 7.46-7.56 (m, 

3H), 7.95 (d, J = 8.0 Hz, 2H), 7.99 (d, J = 8.8 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 28.09, 

38.19, 49.22, 67.23, 69.82, 110.21, 121.20, 121.26, 121.71, 126.51, 127.70, 128.10, 129.02, 

133.83, 142.00, 144.36, 177.20; MS (EI) m/z (%) 363 (M+, 30%), 220 (28%), 207 (100%), 

194 (32%), 77 (16%); HRMS (EI) calcd for [M+H]+ C21H22N3O3 364.1656, found 364.1664; 

IR (CH2Cl2, cm-1) 2944 (m), 2873 (m), 2798 (m), 1776 (m), 1704 (s), 1399 (m), 1123 (s). 

1-[5-(3-Phenyl-1H-indazol-1-yl)pentyl]pyrrolidine-2,5-dione (15n) 

Ph

NN

N

O

O

Product 15n was isolated as an orange oil in a 60% yield: 1H NMR 

(400 MHz, CDCl3) δ 1.35 (m, 2H), 1.62 (m, 2H), 1.99 (m, 2H), 2.62 (s, 4H), 3.48 (t, J = 7.3 

Hz, 2H), 4.42 (t, J = 7.1 Hz, 2H), 7.20 (t, J = 7.0 Hz, 1H), 7.39 (dd, J = 14.4, 6.7 Hz, 3H), 

7.50 (t, J = 7.6 Hz, 2H), 7.96 (d, J = 7.6 Hz, 2H), 8.01 (d, J = 8.2 Hz, 1H); 13C NMR (100 
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MHz, CDCl3) δ 24.27, 27.41, 28.28, 29.55, 38.66, 48.75, 109.40, 121.05, 121.54, 121.77, 

126.34, 127.61, 127.93, 128.94, 133.90, 141.06, 143.86, 177.35; MS (EI) m/z (%) 361 (M+, 

100%), 249 (53%), 194 (48%), 77 (29%); HRMS (EI) calcd for [M+H]+ C22H24N3O2 

362.1863, found 362.1870; IR (CH2Cl2, cm-1) 2937 (m), 2862 (m), 1773 (m), 1693 (s), 1491 

(s), 1351 (s). 
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7.1. ABSTRACT 

 Pyrido[1,2-a]indoles are known as medicinally and pharmaceutically important 

compounds, but there is a lack of efficient methods for their synthesis. We report a 

convenient and efficient route to these privileged structures starting from easily accessible 2-

substituted pyridines and aryne precursors. A small library of compounds has been 

synthesized utilizing the developed method, affording variously substituted pyrido[1,2-

a]indoles in moderate to good yields. 

 

7.2. INTRODUCTION 

 Selected examples of pyridoindoles have been shown to possess important biological 

activities (Figure 1). (-)-Goniomitine isolated from the root bark of Gonioma Malagasy has 
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shown significant antitumor activity against several types of cancer cells.1 A series of 

indolo[2,1-a]isoquinoline compounds have been shown to possess a wide range of biological 

activities, including cytostatic,2,3 antiviral,4 immunosuppressive5 and tubulin polymerization 

inhibiting activities. 6  Another series of compounds known as metosenes have shown 

significant antitumor activity.7 However, the fully aromatic pyridoindole core has been 

mentioned in the literature only briefly, mainly due to the challenges in the preparation of 

this system.8 Recent efforts, as shown herein, have focused on utilizing the nucleophilic 

nature of carefully designed pyridines for the synthesis of pyrido[1,2-a]indoles. 

N

OH

HN
H

(-)-Goniomitine
antitumor

N
R1

R2

indolo[2,1-α]isoquinolines
antitumor, antiviral, immunosupressive
tubulin polymerization inhibitors

N

O

O 1-2

R1

R2

OH

mitosenes
antitumor

 

Figure 1. Biologically active compounds containing a pyridoindole core. 

 The highly electrophilic nature of arynes, as well as recent advances in the development 

of mild methods for their generation and increasing numbers of commercially available aryne 

precursors provide a great environment for the development of useful synthetic reactions 

between arynes and a wide variety of nucleophiles.9 Developmnent of aryne chemistry 

allowed to access to a number of interesting heterocycles and carbocycles in few steps, 

including indoles,10 xanthones,11 acridines,12 indazoles,13 and benzotriazoles,14 among others, 

using mild and functional group tolerant reaction conditions.  Our group has a long-term 
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interest in exploring the full potential of aryne-based methodologies.15 

 A few reports have demonstrated pyridine-aryne couplings. In 2001, Cheng and co-

workers reported the reaction of 2-pyridyl carboxylates and benzynes (Scheme 1).16 In 2010, 

the same group reported that the multicomponent reaction of pyridines, arynes, and terminal 

acetylenes or methyl ketones leads to a series of 1,2-disubstituted pyridines.17 Before that, 

similar work was reported using acetonitrile as the proton source and secondary nucleophile 

in place of the terminal acetylene.18 Additionally, Zhang has reported the reaction of arynes 

with pyridyl analogues generated in situ from pyridines or quinolines and alpha-bromo 

carbonyl compounds (Scheme 1).19 

Scheme 1. Aryne-mediated processes involving pyridines 
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 One of the challenges of  pyridine-based aryne coupling reactions is neutralization of the 

newly formed quaternary nitrogen cation. Wanting to incorporate the pyridine ring system 

into a larger ring system, a series of electrophilic groups in the position 2 of the pyridine ring 

were envisioned to be compatible mechanistically with arynes, namely Michael acceptors 

and imines, leading to the stabilized pyrido[1,2-a]indole aromatic ring system. 

 

7.3. RESULTS AND DISCUSSION 

7.3.1. Aryne annulation of pyridin-2-ylmethyleneamines  

Initially, we attempted a reaction between ethyl pyridin-2-ylcarbamate (1) with the 

Kobayashi benzyne precursor 2,20 hoping to obtain pyrido[1,2-a]quinazolinone 4 (Scheme 2). 

Instead, the product 3 was isolated in a 63% yield. This might be due to the presence of the 

fairly acidic amide hydrogen in the starting compound 1. 

Scheme 2. Reaction of ethyl pyridin-2-ylcarbamate (1) with benzyne 

N N
H

OTf

TMS

2

CsF, CH3CN

rt, 12 h+
O

OEt

1

N N

O

OEt

3, 63%

N N

O

4
not observed !

We then decided to eliminate the acidic hydrogen by switching to a different starting 

material, namely imine 5 (Scheme 3). In this case, messy reaction mixture was obtained, 

without any evidence supporting the formation of 6. We attempted to run this reaction using  

different solvent (THF or toluene) or replacing CsF with other fluoride sources (e.g. TBAF or 
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TBAT), but it did not improve the reaction outcome, providing messy reaction mixtures. 

When the reaction was run in THF at 65 oC, small amount of an unidentified product was 

isolated with its molecular weight corresponding to the addition of 3 benzyne molecules to 

the starting imine 5. Indeed one can imagine that the imine nitrogen atom in the resulted 

compound 6 is nucleophilic enough to further attack the aryne intermediate, thus providing a 

complex mixture of overreacted products. 

Scheme 3. Reaction of benzylidenepyridinamine (5) with benzyne 

N N

OTf

TMS

2

CsF, CH3CN

65 oC, 12 h+

5

N N

Ph

6
not observed

Ph
messy

 

 We then decided to slightly modify the structure of imine 5 and explore analogous 

imines derived from 2-pyridinecarboxaldehyde, which should lead to the formation of the 

five-membered heterocycles, namely pyridoindoles. Thus, imine 7 was allowed to react with 

benzyne to form a mixture of pyridoindoles 8 and 9 in a combined yield of 56% (Scheme 4).  

Scheme 4. Reaction of 2-imino-pyridine 7 with benzyne 

N
N tBu

+
OTf

TMS

27

CsF, THF
65 oC, 24 h

N
H
N
tBu

8, 25%

N N
tBu

9, 31%

Ph

+

 

 In this case the reactive nitrogen atom in initially formed compound 8 was partially 
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trapped with one molecule of aryne intermediate to form 9.  

7.3.2. Optimization of the reaction conditions 

 Attempts were made to inhibit the subsequent arylation process (Table 1). However, in 

all cases, roughly equimolar mixtures of 8 and 9 were obtained in modest yields (entries 1-4). 

After evaluating the reaction conditions that should favor formation of the free amino 

product, we were able to suppress the formation of product 9 and obtain product 8 

exclusively, albeit in only 18% yield (entry 5). Alternatively, the subsequent arylation 

product 9 could be promoted by using an excess of the benzyne precursor (3 equiv) and an 

elevated reaction temperature (entry 6).  

Table 1. Optimization of Aryne Annulations with Pyridin-2-ylmethanimines 

entry 2 (equiv) fluoride source (equiv) temp (°C) % yielda 

1 1.0 TBAT rt 62 (34:28)b 

2 1.2 CsF (3) 65 56 (25:31)b 

3 2.0 CsF (3) 65 67 (36:31)b 

4 3.0 CsF (6) 65 70 (55:15)b 

5 1.2 TBAF (1.4) -78 to 100 18c 

6 3.0 CsF (6) 100 72d 
a Isolated yields. b Combined yield (8:9). c Yield of 8. d Yield of 9. 

!

7.3.3. Study of the scope of the reaction  

With optimal conditions in hand for the synthesis of N-aryl-2-pyrido[1,2-a]indoles, a 

series of diverse imines were allowed to react with benzyne precursor 2 (Table 2). To our 

delight, our optimized conditions provided the corresponding pyridoindoles in good yields 

starting from a variety of alkyl imines, even with allyl imine 16 and the sterically bulky 
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adamantyl imine 14 (entries 1-5). Unfortunately, propargyl imine 18 did not provide any of 

the desired product (entry 6). Additionally, heterocycle-containing primary amines were 

condensed with 2-pyridinecarboxaldehyde to form a series of imines capable of reacting with 

benzyne, including substrates containing the medicinally-relevant benzodioxole (19), 

thiophene (21), and amide (23) functionality (entries 7-9). A major drawback was the fact 

that all substrates that contained a CH2 unit directly attached to the imine nitrogen afforded 

pyridoindoles that were not stable on silica gel and polymerized rapidly. This caused some 

problems with purification of these compounds, but we found that the addition of 5% 

triethylamine to both the silica gel and the eluent helped stabilize the compounds and 

afforded clean products in slightly higher yields. However, despite the instability of the 

product, even the diimine 25, derived from 1,2-diaminoethane afforded the corresponding 

double-annulation product 26 in a 51% yield (entry 10). The halogenated substrates 27 and 

29 reacted poorly compared to the corresponding parent substrate 7, affording the 

corresponding pyridoindoles 28 and 30 in 34 and 22% yields (entries 11 and 12). 

Furthermore, the 6-substituted pyridinylmethanimines 31 and 32 did not react with benzyne 

according to TLC analysis (entries 13 and 14). The quinoline-based imine 33 reacted 

smoothly to form the desired product 34 in a 75% yield (entry 15). When thiazole derivative 

35 was allowed to react using our optimized reaction conditions the desired product 36 was 

formed, albeit in only 27% yield (entry 16). Unfortunately, the 4-methoxyaniline-derived 

imine 37 under our optimized reaction conditions afforded a complicated mixture with only 

trace amounts of the desired pyridoindole based on 1H NMR data (entry 17). 
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Table 2. Synthesis of Pyridoindoles from N-Pyridin-2-yl-methanimines and Arynesa 

N
N
R

+
OTf

TMS

CsF, THF
100 oC, 16 h

N N
R

Ph

!

entry starting material aryne product 
yield 

(%)b 

 
N

N
R  

OTf

TMS
2 

N N
R

Ph

 

 

1 R = tBu, 7  R = tBu, 9 72 

2 R = iPr, 10  R = iPr, 11 66 

3 R = Cy, 12  R = Cy, 13 75 

4 R = Ada, 14  R = Ada, 15 62 

5 R = Allyl, 16  R = Allyl, 17 54 

6 R = Propargyl, 18  R = Propargyl, - 0c 

 
N

N

O
O

 

2 N N
Ph

O

O

 

 

7 19  20 78 

 
N

N S

 
2 N N

Ph

S

 

 

8 21  22 70 
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Table 2 continued. 

 
N

N N

O  
2 N N

Ph

N

O  

 

9 23  24 60 

 N
N

N
N

 

2 N

N
Ph

N
Ph

N

 

 

10 25  26 51 

 
N

N tBu

R1

R2  
2 N N

Ph

tBu

R1

R2

 

 

11 R1 = Br, R2 = H, 27  R1 = Br, R2 = H, 28 34d 

12 R1 = F, R2 = H, 29  R1 = F, R2 = H, 30 22d 

13 R1 = H, R2 = Br, 31  - 0e 

14 R1 = H, R2 = 4-OMeC6H4, 32  - 0e 

 
N

N tBu  
2 N N

Ph

tBu

 

 

15 33  34 75 

 
N

N tBu

S

 
2 N N

Ph

tBu

S

 

 

16 35  36 27 
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Table 2 continued. 

 N
N

OMe  

2   

17 37  - tracef 

 7 

!
OTf

TMS
OMe !

N N

OMe

tBu

OMe

 

 

18  38 39 80 
a For the details of experimental procedure, see the experimental section. bIsolated yield after column. 

chromatography. cThe product was not observed or isolated. dThe yield was determined by 1H NMR spectral 

analysis. eRecovered unreacted starting material.  fThe reaction afforded a complicated mixture that contained 

trace amounts of the desired product based on 1H NMR spectral analysis. 

7.3.4. Additional studies 

Additionally, an unsymmetrical aryne precursor 38 has been employed in the reaction 

with imine 7, which provided compound 39 in an 80% yield. The exact structure of the 

compound 39 has been determined by COSY and NOE experiments (Figure 2). 

N

12

N

O

17

19 O

39

23

24

 
Figure 2. Characteristic NOEs observed in the 1H - 1H NOESY analysis (NOESY, 400 MHz, 

CDCl3) and 3D structure (generated in Chem3D, C: gray; H: white; N: blue; O: red) for 

compound 39. 
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An NOE experiment showed the methoxy protons (C24) coupling to the doublet (C12) 

and the methoxy protons (C23) coupling to a singlet (C17) and a doublet (C19). If a different 

isomer had been formed, then the methoxy group (C23) should have ended up ortho to the 

nitrogen, thus only one coupling of hydrogens at C23 should have been observed.  

 In addition, we studied the possibility of converting the reaction presented in Scheme 4 

into a one-pot protocol without isolation of the imine 7. We were pleased to find that reaction 

between the aldehyde 40, amine 41 (1 equiv) and aryne precursor 2, under the optimized 

reaction conditions afforded the desired pyridoindole product 9 in a 60% yield (Scheme 5).  

Scheme 5. A one-pot approach for the synthesis of pyridoindoles 

N
+

OTf

TMS

CsF, THF
100 oC, 16 h

N N
tBu

Ph

O + tBuNH2

9, 60%240 41  

7.3.5. Aryne Annulation of pyridin-2-malonates21 

We also shown that in addition to imines, 2-(pyridin-2-ylmethylene)malonates can also 

participate in the discovered aryne annulation, providing access to the 2-(pyrido[1,2-a]indol-

10-yl)malonates. Thus, when compound 42 was reacted with benzyne precursor 2 under 

slightly different reaction conditions the desired pyridoindole 43 was isolated in a 68% yield 

(Scheme 6). 
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Scheme 6. Reaction of diethyl 2-(pyridin-2-ylmethylene)malonate 42 with benzyne 

TBAT, THF
rt, 24 h

+
OTf

TMS

N
CO2Et

CO2Et

N CO2Et

CO2Et

43, 68%42 2  

Selected examples of the scope of this process are shown in Table 3. The methodology 

tolerates a variety of different esters, providing dimethyl ester, a diethyl ester, a and a 

dibenzyl ester products 43, 45 and 49 in good yields (entries 1,2 and 4), whereas sterically 

hindered di-t-butyl ester 46 afforded lower 40% yield of product 47 (entry 3). Similarly to the 

results obtained with imines (Table 2, entries 11-15), lower yields of final products were 

obtained when various substituents were placed on the pyridine ring. For example, when a 

halogen-containing pyridines 50, 52 and 54 were subjected to the optimized conditions 

corresponding pyridoindoles 51, 53 and 55 were isolated in 39, 45 and 51% yields, 

respectively (entries 5-7). One interesting trend noted is the fact that the yields seemed to 

increase as the halogen decreased in electronegativity. With quinoline substrate 56 only 32% 

yield of product 57 was obtained (entry 8), comparing to 75% yield of the product 34 (Table 

2, entry 15). However, when a substituent was placed at the 6-position of the pyridine ring 

(entry 9) the formation of the desired pyridoindole was not observed, analogously to the 

experiments with imines (table 2, entry 14). β-Keto esters have also been condensed with 2-

pyridinecarboxaldehyde in order to obtain the corresponding pyridine-containing Michael 

acceptors. The methyl ketone 59 (a mixture of E and Z isomers), afforded product 60 in a 

61% yield (entry 10). Unfortunately, thiazole derivative 61 did not afford desired 
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pyridoindole (entry 11), compared to the lower yield of product 36 (Table 2, entry 16). 

Table 3. Synthesis of Pyridoindoles from 2-(Pyridin-2-yl-methylene)malonates and Arynesa 

TBAT, THF
rt, 24 h+

OTf

TMSN
R4R1 N

R3 R3
R2 R2R1

R4 !

entry starting material aryne product yield 
(%)b 

 
N CO2R

CO2R

 
 N

CO2R

CO2R

 

 

1 R = Et, 42 2 R = Et, 43 68 

2 R = Me, 44  R = Me, 45 74 

3 R = t-Bu, 46  R = t-Bu, 47 40 

4 R = Bn, 48  R = Bn, 49 72 

 
N CO2Et

CO2Et
F

 
2 N

CO2Et

CO2Et
F

 

 

5 50  51 39 

 
N CO2Me

CO2Me
Cl

 
 2 N

CO2Me

CO2Me
Cl

 

 

6 52  53 45 

 

 



www.manaraa.com

 

 

217 

Table 3 continued. 

 
N CO2Me

CO2Me
Br

 
2 N

CO2Me

CO2Me
Br

 

 

7 54  55 51 

 
N CO2Et

CO2Et

 
2 N

CO2Et

CO2Et

 

 

8 56  57 32 

 
N CO2Et

CO2Et

R  
2   

9 R = 4-MeOC6H4, 58  - -c 

 N

CO2Me
O

Me  
2 N

CO2Me

O

Me

 

 

10 59  60 61 

 
N CO2Me

S CO2Me

 
2   

11 61  - -b,d 

 42 
OTf

TMS

MeO

MeO  

N
CO2Et

CO2Et

MeO OMe  

 

12  62 63 64 
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Table 3 continued. 

 42 OTf

TMS  

N
CO2Et

CO2Et

 

 

13  64 65 66 

 42 
OTf

TMS
OMe  

N
CO2Et

CO2Et

OMe  

 

14  39 66 75 

 44 
OTf

TMS
OMe

MeO

 

N
CO2Me

CO2Me

OMe

MeO  

 

15  67 68 73 
a For the details of experimental procedure, see the experimental section. b Isolated yield after column 

chromatography. c The product was not observed or isolated. d No reaction. e A complicated mixture was 

observed on TLC analysis. 

 
 It was pleasing to see that our conditions tolerated a variety of different benzyne 

precursors (entries 12-15). Symmetrical benzyne precursor 62 yielded pyrido[1,2-a]indole 63 

in a 64% yield (entry 12). A series of unsymmetrical benzyne precursors 64, 39, and 67 have 

been examined and all produced single regioisomers in good yields (entries 13-15). These 

results are in good agreement with previously reported studies on the regioselectivity of 

reactions involving unsymmetrical aryne precursors22 and provide additional evidence that 
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the aryne is initially attacked by the nitrogen of the pyridine ring.  

 A series of 1D-NOESY and/or 1D-COSY experiments confirmed the structures shown 

(Figure 3). For example, an NOE interaction was observed between the malonate hydrogen at 

C14 of 65 and two doublet protons (C5 and C20). Furthermore, using a 1D-COSY 

experiment, these two doublets were observed to couple to two triplet protons. If the other 

regioisomer had been formed, the two doublets found to interact with the malonate hydrogen 

at through 1D-NOESY experiment would have coupled to both a triplet proton and a doublet 

proton in a 1D-COSY experiment. For compounds 66 and 68, NOE interactions between the 

malonate hydrogen (C14) and the methoxy protons (C19) were observed along with coupling 

to the doublet hydrogen at C5.  

N

5 14
CO2Et

EtO2C

20H

65 66

68

N

5
CO2Et

EtO2C

O

14

H
19

N

5 14
CO2Et

EtO2C

O
H

19

OMe

 
Figure 3. Characteristic NOEs observed in the 1H - 1H NOESY analysis (NOESY, 400 MHz, 

CDCl3) and 3D structures (generated in Chem3D, C: gray; H: white; N: blue; O: red) for 

compounds 65, 66 and 68. 
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7.3.6. Reaction mechanism 

 A proposed reaction mechanism is shown in Scheme 7. Initially, the pyridyl nitrogen 

attacks the aryne as a nucleophile, pushing electrons onto an adjacent aromatic carbon. Then 

the newly formed aryl carbanion attacks the neighboring electrophile to form intermediate A, 

which subsequently abstracts a hydrogen to afford the neutralized aromatic structures B or C.  

In the case of N-pyridin-2-yl-methanimines (X = NR) C, a subsequent aryne reaction takes 

place to form the arylated amine D. 

Scheme 7. Proposed mechanism for formation of the pyrido[1,2-a]indoles 

OTf

TMS

N
X

N X-

H

A

F-

X = C(CO2R3)2 X = NR4

R1 R1

R2

R2

R1N

R2

R1
CO2R3

CO2R3 N N

R2

R1
R4

R1

H

H

N N

R2

R1
R4
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B
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7.4. CONCLUSIONS 

 In conclusion, certain readily obtainable 2-substituted pyridines when allowed to react 

with arynes, give a variety of biologically relevant pyrido[1,2-a]indoles in good overall 

yields under mild reaction conditions. Thus a new route to an understudied heterocyclic ring 

system has been developed.  The optimized methodology tolerates a variety of functional 

groups, with substituents on the pyridine ring being less efficient. A number of various 2-

substituted pyridines reacted with benzyne precursors, both symmetrical and unsymmetrical, 

to yield the desired pyrido[1,2-a]indoles in good yields. 
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7.6. EXPERIMENTAL 

7.6.1. General remarks 

The 1H and 13C NMR spectra were recorded at 300 and 75.5 MHz or 400 and 100 MHz, 

respectively. Thin layer chromatography was performed using commercially prepared 60-

mesh silica gel plates, and visualization was effected with short wavelength UV light (254 

nm). All melting points are uncorrected. All reagents were used directly as obtained 
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commercially. Compounds 123 and 524 were prepared according to the literature procedures. 

7.6.2. Preparation of (E)-ethyl 1-phenylpyridin-2(1H)-ylidenecarbamate (3)  

Compound 1 (41.6 mg, 0.25 mmol) was placed in a vial with a screw cap. CsF (113.9 

mg, 0.75 mmol) was added, the mixture flushed with argon and diluted with dry acetonitrile 

(5 mL), then 2 (73 L, 0.3 mmol) was added, the vial was sealed and the reaction mixture 

stirred at room temperature for 16 h. After reaction completion and standard aqueous work 

up the crude reaction mixture was purified by column chromatography (ethyl acetate: 

hexanes (2:1)).  

N N

O

OEt

This compound was obtained in a 63% yield (38.2 mg) as a yellow oil: 1H 

NMR (400 MHz, CDCl3) δ δ 8.00 (dd, J = 9.4, 1.1 Hz, 1H), 7.45 – 7.53 (m, 3H), 7.38 – 7.44 

(m, 2H), 7.34 (dd, J = 7.2, 1.8 Hz, 2H), 6.45 (td, J = 6.7, 1.4 Hz, 1H), 4.05 (q, J = 7.1 Hz, 

2H), 1.21 (t, J = 7.1 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 162.34., 160.53,, 142.41,, 

139.22, 138.78, 129.63,, 129.01, 126.81, 120.68, 109.33, 61.18, 14.84; HRMS (EI) calcd for 

C14H15N2O2 243.1128, found 243.1135. 

7.6.3. General procedure for preparation of the pyridin-2-ylmethanimines 

 The commercially available aldehyde (2.34 mmol) was added to a 5-10 mL round-

bottom flask equipped with a magnetic stir bar. The flask was sealed, purged with argon, and 

water (0.6 mL) was added. To the resulting suspension or solution was added the 

corresponding amine (1-3 equiv) and the mixture was stirred at room temperature overnight. 
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Then the reaction mixture was subjected to an aqueous work up using ethyl acetate or diethyl 

ether as the organic phase. The organic layer was separated, dried over anhydrous MgSO4, 

and the solvent was removed to afford the pure imine. 

tert-Butyl(pyridin-2-yl-methylene)amine (7)25 

N
N tBu  This compound was obtained as a yellow liquid (322.2 mg, 85%): 1H 

NMR (400 MHz, CDCl3) δ 8.63 (d, J = 4.0 Hz, 1 H), 8.36 (s, 1 H), 8.02 (d, J = 7.9 Hz, 1 H), 

7.73 (t, J = 7.7 Hz, 1 H), 7.29 (ddd, J = 7.5, 4.9, 1.2 Hz, 1 H), 1.31 (s, 9 H). 

Isopropyl(pyridin-2-yl-methylene)amine (10)26  

N
N iPr  This compound was obtained as a brown liquid (250.2 mg, 72%): 1H 

NMR (400 MHz, CDCl3) δ 8.63 (d, J = 4.5 Hz, 1 H), 8.38 (s, 1 H), 7.98 (d, J = 7.9 Hz, 1 H), 

7.72 (t, J = 7.7 Hz, 1 H), 7.34-7.25 (m, 1 H), 3.70-3.57 (m, 1 H), 1.27 (d, J = 6.3 Hz, 6 H). 

Cyclohexyl(pyridin-2-yl-methylene)amine (12)27  

N
N

 This compound was obtained as a brown liquid (440.1 mg, 

99%): 1H NMR (300 MHz, CDCl3) δ 8.63 (d, J = 4.9 Hz, 1 H), 8.39 (s, 1 H), 7.98 (d, J = 7.9 

Hz, 1 H), 7.72 (t, J = 6.8 Hz, 1 H), 7.29 (ddd, J = 7.4, 4.9, 1.2 Hz, 1 H), 3.29 (tt, J = 10.3, 4.0 

Hz, 1 H), 1.91-1.49 (m, 7 H), 1.46-1.14 (m, 3 H). 
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Adamantyl(pyridin-2-yl-methylene)amine (14) 

N
N

 This compound was obtained as a yellow solid (516.1 mg, 92%): mp = 

40-42 ºC, 1H NMR (400 MHz, CDCl3) δ 8.62 (d, J = 3.1 Hz, 1 H), 8.34 (s, 1 H), 8.01 (d, J = 

6.9 Hz, 1 H), 7.71 (t, J = 7.1 Hz, 1 H), 7.32-7.23 (m, 1 H), 2.16 (s, 3 H), 1.82 (s, 6 H), 1.71 

(q, J = 12.5 Hz, 6 H); 13C NMR (75 MHz, CDCl3) δ 156.4, 155.8, 149.4, 136.7, 124.5, 121.1, 

58.3, 43.2, 36.7, 29.7; HRMS (EI) calcd for C16H20N2 241.1699, found 241.1700. 

Allyl(pyridin-2-yl-methylene)amine (16)28 

N
N

 This compound was obtained as a dark brown oil (270.4 mg, 

79%): 1H NMR (300 MHz, CDCl3) δ 8.65 (d, J = 4.8 Hz, 1 H), 8.40 (s, 1 H), 8.18-7.88 (m, 

1H), 7.75 (t, J = 7.7 Hz, 1 H), 7.45-7.28 (m, 1 H), 6.24-5.95 (m, 1H), 5.37-5.04 (m, 2 H), 

4.32 (dd, J = 5.8, 1.4 Hz, 2 H). 

Propargyl(pyridin-2-yl-methylene)amine (18) 

N
N

 This compound was obtained as a brown liquid (262.3 mg, 78%): 1H 

NMR (400 MHz, CDCl3) δ 8.70 (d, J = 1.7 Hz, 1 H), 8.66 (d, J = 3.8 Hz, 1 H), 7.98 (d, J = 

7.9 Hz, 1 H), 7.75 (t, J = 6.9 Hz, 1 H), 7.37-7.29 (m, 1 H), 4.64-4.51 (m, 2 H), 2.55 (s, 1 H); 

13C NMR (100 MHz, CDCl3) δ 163.4, 154.4, 149.7, 136.8, 125.2, 121.7, 78.5, 76.4, 47.3; 

HRMS (EI) calcd for C9H8N2 145.0760, found 145.0761. 
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1-(Benzo[1,3]dioxol-5-yl)-N-(pyridin-2-yl-methylene)methanamine (19) 

N
N

O
O

This compound was obtained as a pale yellow solid (505.8 mg, 90%): mp  

75-77 ºC; 1H NMR (400 MHz, CDCl3) δ 8.63 (d, J = 4.8 Hz, 1 H), 8.43 (s, 1 H), 8.03 (d, J = 

7.9 Hz, 1 H), 7.72 (t, J = 7.7 Hz, 1 H), 7.35-7.26 (m, 1 H), 6.83 (s, 1 H), 6.78 (s, 2 H), 5.92 

(s, 2 H), 4.76 (s, 2 H). 13C NMR (100 MHz, CDCl3) δ 162.7, 154.6, 149.5, 147.9, 146.8, 

136.7, 132.6, 124.9, 121.5, 121.5, 108.9, 108.9, 108.4, 101.1, 101.1, 101.0, 64.8; HRMS (EI) 

calcd for C14H12N2O2 241.0972, found 241.0978. 

N-(Pyridin-2-ylmethylene)-2-(thiophen-2-yl)ethanamine (21) 

N
N S

 This compound was obtained as a yellow oil (409.3 mg, 87%): 

1H NMR (300 MHz, CDCl3) δ 8.64 (ddd, J = 4.8, 1.6, 0.9 Hz, 1 H), 8.33 (s, 1 H), 8.00 (d, J = 

7.9 Hz, 1 H), 7.75 (td, J = 7.8, 1.7 Hz, 1 H), 7.32 (ddd, J = 7.4, 4.8, 1.2 Hz, 1 H), 7.13 (dd, J 

= 5.1, 1.2 Hz, 1 H), 6.92 (dd, J = 5.1, 3.4 Hz, 1 H), 6.85 (dd, J = 3.4, 0.9 Hz, 1 H), 3.95 (td, J 

= 7.1, 1.3 Hz, 2 H), 3.27 (t, J = 7.1 Hz, 2 H); 13C NMR (100 MHz, CDCl3) δ 162.9, 154.6, 

149.6, 142.3, 136.8, 131.7, 126.9, 125.4, 125.0, 123.9, 121.6, 62.8, 31.5; HRMS (EI) calcd 

for C12H12N2S 217.0794, found 217.0797. 
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(E)-1-[3-(Pyridin-2-ylmethyleneamino)propyl]pyrrolidin-2-one (23) 

N
N N

O This compound was obtained as a yellow oil (226.5 mg, 41%): 1H 

NMR (300 MHz, CDCl3) δ 8.60 (d, J = 3.8 Hz, 1 H), 8.34 (s, 1 H), 7.90 (d, J = 7.9 Hz, 1 H), 

7.70 (ddt, J = 9.4, 7.7, 1.8 Hz, 1 H), 7.32-7.22 (m, 1H), 3.64 (t, J = 6.9 Hz, 2 H), 3.36 (q, J = 

6.8 Hz, 4 H), 2.31 (t, J = 8.1 Hz, 2 H), 2.02-1.86 (m, 4 H); 13C NMR (75 MHz, CDCl3) δ 

175.1, 162.5, 154.4, 149.6, 136.7, 124.9, 121.6, 59.0, 47.3, 40.8, 31.2, 28.5, 18.0; HRMS (EI) 

calcd for C13H18N3O 232.1444, found 232.1447. 

(N1E,N2E)-N1,N2-Bis(pyridin-2-ylmethylene)ethane-1,2-diamine (25) 

N
N

N
N

 This compound was obtained as a yellow solid (298.9 mg, 

54%): mp = 61-63 ºC; 1H NMR (400 MHz, CDCl3) δ 8.61 (d, J = 4.1 Hz, 2 H), 8.40 (s, 2 H), 

7.96 (d, J = 7.9 Hz, 2 H), 7.71 (td, J = 7.7, 1.8 Hz, 2 H), 7.28 (ddd, J = 7.5, 4.9, 1.3 Hz, 2 H), 

4.05 (s, 4 H); 13C NMR (100 MHz, CDCl3) δ 163.6, 154.5, 149.6, 136.7, 124.9, 121.5, 61.5; 

HRMS (EI) calcd for C14H15N4 239.1291, found 239.1297. 

tert-Butyl-(5-bromopyridin-2-ylmethylene)amine (27) 

N
N tBu

Br

 This compound was obtained as a brown solid (545.2 mg, 97%): mp  

35-37 ºC; 1H NMR (400 MHz, CDCl3) δ 8.68 (d, J = 1.6 Hz, 1 H), 8.29 (s, 1 H), 7.93 (d, J = 

8.4 Hz, 1 H), 7.84 (dd, J = 8.5, 1.8 Hz, 1 H), 1.30 (s, 9 H); 13C NMR (100 MHz, CDCl3) δ 
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155.5, 154.2, 150.5, 139.4, 122.3, 121.9, 58.3, 29.7; HRMS (EI) calcd for C10H13BrN2 

241.0335, found 241.0336. 

tert-Butyl-(5-fluoropyridin-2-ylmethylene)amine (29) 

N
N tBu

F

 This compound was obtained as a yellow oil (193.8 mg, 46%): 1H 

NMR (300 MHz, CDCl3) δ 8.45 (d, J = 2.8 Hz, 1 H), 8.32 (s, 1 H), 8.05 (dd, J = 8.8, 4.8 Hz, 

1 H), 7.43 (td, J = 8.2, 2.6 Hz, 1 H), 1.29 (s, 9 H); 13C NMR (100 MHz, CDCl3) δ 160.2 (1JCF 

257 Hz), 155.2, 152.1 (3JCF 4 Hz), 137.5 (2JCF 24 Hz), 123.6 (2JCF 19 Hz), 122.3 (3JCF 4 Hz), 

58.0, 29.8; HRMS (EI) calcd for C10H13FN2 181.1136, found 181.1137. 

tert-Butyl-(6-bromopyridin-2-ylmethylene)amine (31) 

N
N tBuBr  This compound was obtained as colorless crystals (515.2 mg, 91%): 

mp 50-52 ºC; 1H NMR (300 MHz, CDCl3) δ 8.27 (s, 1 H), 8.00 (dd, J = 7.6, 0.9 Hz, 1 H), 

7.57 (t, J = 7.5 Hz, 1 H), 7.46 (dd, J = 7.8, 0.9 Hz, 1 H), 1.27 (s, 9 H); 13C NMR (100 MHz, 

CDCl3) δ 156.9, 155.4, 141.4, 139.0, 128.9, 119.5, 58.4, 29.7; HRMS (EI) calcd for 

C10H13BrN2 241.0355, found 241.0339. 

tert-Butyl[6-(4-methoxyphenyl)pyridin-2-ylmethylene]amine (32) 

N N tBu

MeO This compound was obtained as a cream colored solid (305.2 

mg, 97%): mp 81-83 ºC; 1H NMR (400 MHz, CDCl3) δ 8.45 (s, 1 H), 8.06-7.92 (m, 3 H), 

7.73 (t, J = 7.7 Hz, 1 H), 7.64 (d, J = 7.8 Hz, 1 H), 7.00 (d, J = 8.6 Hz, 2 H), 3.85 (s, 3 H), 
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1.35 (d, J = 2.5 Hz, 9 H); 13C NMR (100 MHz, CDCl3) δ 160.6, 157.4, 156.7, 155.5, 137.2, 

131.9, 128.3, 120.6, 118.3, 114.3, 57.9, 55.5, 29.8; HRMS (EI) calcd for C17H21N2O 

269.1648, found 269.1653. 

tert-Butyl(quinolin-2-ylmethylene)amine (33) 

N
N tBu  This compound was obtained as a yellow solid (417.8 mg, 84%): mp 

54-56 ºC; 1H NMR (400 MHz, CDCl3) δ 8.53 (s, 1 H), 8.20 (q, J = 8.7 Hz, 2 H), 8.12 (d, J = 

8.4 Hz, 1 H), 7.84 (d, J = 8.1 Hz, 1 H), 7.73 (t, J = 7.7 Hz, 1 H), 7.56 (t, J = 7.5 Hz, 1 H), 

1.36 (s, 9 H); 13C NMR (100 MHz, CDCl3) δ 157.0, 155.8, 147.8, 136.5, 129.8, 129.5, 128.8, 

127.8, 127.2, 118.4, 58.2, 29.8;  HRMS (EI) calcd for C14H16N2 213.1386, found 213.1391. 

tert-Butyl(thiazol-2-ylmethylene)amine (35) 

N
N tBu

S

 This compound was obtained as a pale yellow liquid (198.3 mg, 69%): 1H 

NMR (400 MHz, CDCl3) δ 8.40 (s, 1 H), 7.87 (d, J = 2.8 Hz, 1 H), 7.35 (d, J = 3.1 Hz, 1 H), 

1.28 (s, 9 H); 13C NMR (100 MHz, CDCl3) δ 149.9, 143.9, 123.8, 121.2, 58.5, 29.6; HRMS 

(EI) calcd for C8H12N2S 169.0794, found 169.0795. 

(E)-4-methoxy-N-(pyridin-2-ylmethylene)aniline (37)29 

N
N

OMe  This compound was obtained as a yellow oil (441.2 mg, 89%): 

1H NMR (400 MHz, CDCl3) δ 8.70 (d, J = 5.0 Hz, 1 H), 8.63 (s, 1 H), 8.19 (d, J = 7.8 Hz, 1 

H), 7.80 (td, J = 7.8, 1.8 Hz, 1 H), 7.34 (d, J = 8.7 Hz, 3 H), 6.95 (d, J = 8.8 Hz, 2 H), 3.84 (s, 
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3 H). 

7.6.4. General procedure for preparation of the N-methyl-N-phenylpyrido[1,2-a]indol-

10-amines 

 To a dry 4 dram vial equipped with a magnetic stir bar and screw cap, CsF (228 mg., 1.5 

mmol, 6 equiv) was added under an inert atmosphere of nitrogen. Then, the corresponding 

imine (0.25 mmol), THF (5 mL), and the aryne precursor (0.75 mmol, 3 equiv) were added 

and the vial was tightly sealed.  The reaction mixture was vigorously stirred at 100 ºC for 16 

h.  After cooling, the reaction mixture was diluted with ethyl acetate, filtered and 

concentrated under reduced pressure. The crude reaction mixture was then purified by 

column chromatography using hexanes or ethyl acetate/hexane mixtures with the addition of 

1% triethylamine as the eluent to afford pure product. 

N-(tert-Butyl)-N-phenylpyrido[1,2-a]indol-10-amine (9) 

N N
Ph

tBu

This compound was obtained a yellow oil (56.1 mg, 72%): 1H NMR (300 

MHz, CDCl3) δ 8.23 (d, J = 7.1 Hz, 1 H), 7.83 (dd, J = 10.4, 8.2 Hz, 2 H), 7.48 (dt, J = 9.4, 

1.2 Hz, 1 H), 7.40-7.34 (m, 1 H), 7.26 (ddd, J = 8.1, 7.0, 1.2 Hz, 2 H), 6.80 (ddd, J = 9.4, 6.3, 

1.0 Hz, 1 H), 6.38 (ddd, J = 7.4, 6.4, 1.2 Hz, 1 H), 1.26 (s, 9 H); 13C NMR (100 MHz, 

CDCl3) δ 149.5, 134.5, 128.7, 128.3, 127.9, 124.3, 123.1, 122.4, 119.9, 119.4, 119.0, 117.6, 

117.8, 112.6, 110.4, 107.9, 57.6, 30.4; HRMS (EI) calcd for C22H22N2 314.1625, found 

314.1633. 
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N-(Isopropyl)-N-phenylpyrido[1,2-a]indol-10-amine (11) 

N N
Ph

iPr

This compound was obtained as a yellow solid (49.9 mg, 66%): mp 129-132 

ºC; 1H NMR (400 MHz, CDCl3) δ 8.36 (d, J = 7.0 Hz, 1 H), 7.94 (d, J = 7.3 Hz, 1 H), 7.60 

(d, J = 7.9 Hz, 1 H), 7.35-7.29 (m, 1 H), 7.11 (t, J = 7.8 Hz, 1 H), 6.88-6.82 (m, 1 H), 6.64 

(dd, J = 18.4, 7.8 Hz, 1 H), 6.50 (t, J = 6.6 Hz, 1 H), 4.63-4.46 (m, 1 H), 1.25 (d, J = 6.5 Hz, 

2 H); 13C NMR (100 MHz, CDCl3) δ 149.8, 134.8, 129.2, 128.4, 128.3, 124.4, 123.0, 122.4, 

120.0, 119.5, 117.8, 116.4, 113.2, 110.4, 108.1, 107.0, 49.7, 21.5; HRMS (EI) calcd for 

C21H20N2 301.1699, found 301.1699. 

N-Cyclohexyl-N-phenylpyrido[1,2-a]indol-10-amine (13) 

N N
Ph

 This compound was obtained as a yellow oil (61.1 mg, 75%): 1H NMR 

(400 MHz, CDCl3) δ 8.36 (d, J = 7.0 Hz, 1 H), 7.94 (d, J = 7.1 Hz, 1 H), 7.62 (d, J = 8.1 Hz, 

1 H), 7.32 (d, J = 7.6 Hz, 3 H), 7.11 (t, J = 7.9 Hz, 2 H), 6.88-6.81 (m, 1 H), 6.65 (t, J = 7.1 

Hz, 1 H), 6.60 (d, J = 8.2 Hz, 2 H), 6.50 (t, J = 6.6 Hz, 1 H), 4.08 (t, J = 11.4 Hz, 1 H), 2.21 

(d, J = 12.1 Hz, 2 H), 1.76 (d, J = 13.3 Hz, 2 H), 1.58 (d, J = 16.9 Hz, 1 H), 1.44 (q, J = 13.2 

Hz, 2 H), 1.34-1.07 (m, 3 H), 0.98-0.87 (m, 1 H); 13C NMR (100 MHz, CDCl3) δ 149.8, 

134.6, 129.2, 128.3, 128.2, 124.3, 123.0, 122.4, 120.0, 119.6, 117.9, 116.3, 113.1, 110.4, 

108.1, 107.7, 58.5, 32.0, 26.3, 25.8; HRMS (EI) calcd for C24H24N2 341.2012, found 
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341.2013. 

N-Adamantyl-N-phenylpyrido[1,2-a]indol-10-amine (15) 

N N
Ph

 This compound was obtained as a yellow solid (61.2 mg, 62%): mp 

128-130 ºC; 1H NMR (400 MHz, CDCl3) δ 8.28 (d, J = 7.0 Hz, 1 H), 7.86 (dd, J = 13.5, 8.2 

Hz, 2 H), 7.49 (d, J = 9.4 Hz, 1 H), 7.38 (t, J = 7.1 Hz, 1 H), 7.32-7.23 (m, 2 H), 7.16-7.00 

(m, 4 H), 6.85 (dd, J = 8.4, 6.3 Hz, 1 H), 6.74 (t, J = 6.9 Hz, 1 H), 6.44 (t, J = 6.2 Hz, 1 H), 

2.19 (s, 6 H), 2.09 (s, 3 H), 1.65 (s, 6 H); 13C NMR (100 MHz, CDCl3) δ 149.3, 135.1, 129.5, 

128.2, 127.9, 124.2, 123.0, 122.3, 119.7, 119.2, 118.1, 112.2, 110.3, 107.9, 58.1, 42.5, 36.7, 

30.5. HRMS (EI) calcd for C28H28N2 393.2325, found 393.2324. 

N-Allyl-N-phenylpyrido[1,2-a]indol-10-amine (17) 

N N
Ph

This compound was obtained as an orange oil (40.2 mg, 54%) and was 

highly unstable in various solvents and neat. Due to the low stability a clean 13C NMR 

spectrum of this compound could not be obtained: 1H NMR (400 MHz, CDCl3) δ 8.34 (d, J = 

7.1 Hz, 1 H), 7.92 (d, J = 7.1 Hz, 1 H), 7.57 (d, J = 8.4 Hz, 1 H), 7.32 (d, J = 4.9 Hz, 2 H), 

7.13 (t, J = 8.0 Hz, 2 H), 6.88-6.79 (m, 1 H), 6.70 (s, 3 H), 6.50 (s, 1 H), 6.12-5.97 (m, 1H), 

5.31 (dd, J = 17.2, 1.7 Hz, 1 H), 5.14 (dd, J = 10.3, 1.6 Hz, 1 H), 4.40 (dt, J = 5.5, 1.6 Hz, 2 

H); HRMS (EI) calcd for C21H18N2 298.1470, found 298.1466. 
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N-(Benzo[1,3]dioxol-5-ylmethyl)-N-phenylpyrido[1,2-a]indol-10-amine (20) 

N N
Ph

O

O

 This compound was obtained as an orange oil (76.6 mg, 78%): 

1H NMR (400 MHz, CDCl3) δ 8.33 (d, J = 7.1 Hz, 1 H), 7.92 (d, J = 8.3 Hz, 1 H), 7.60 (d, J 

= 7.3 Hz, 1 H), 7.36-7.28 (m, 2 H), 7.23 (d, J = 9.3 Hz, 1 H), 7.11 (t, J = 8.0 Hz, 2 H), 6.94 

(s, 1 H), 6.89 (d, J = 8.6 Hz, 1 H), 6.83 (dd, J = 8.7, 6.8 Hz, 1 H), 6.72 (d, J = 7.9 Hz, 1 H), 

6.68 (d, J = 7.9 Hz, 3 H), 6.47 (t, J = 6.7 Hz, 1 H), 5.90 (s, 2 H), 4.96 (s, 2 H); 13C NMR (100 

MHz, CDCl3) δ 149.5, 147.9, 146.5, 133.9, 132.1, 129.1, 128.1, 125.7, 124.5, 123.1, 122.4, 

120.2, 120.1, 118.7, 117.2, 113.5, 112.1, 110.6, 108.4, 108.0, 107.8, 101.1, 101.0, 101.0, 

56.8; HRMS (EI) calcd for C26H19N2O2 392.1519, found 392.1527. 

N-Phenyl-N-[2-(thiophen-2-yl)ethyl]pyrido[1,2-a]indol-10-amine (22) 

N N
Ph

S

 This compound was obtained as an orange oil (65.2 mg, 70%): 1H 

NMR (400 MHz, CDCl3) δ 8.38 (d, J = 7.1 Hz, 1 H), 7.97 (d, J = 7.0 Hz, 1 H), 7.61-7.54 (m, 

1 H), 7.39-7.32 (m, 2 H), 7.25 (d, J = 8.6 Hz, 1 H), 7.18 (t, J = 8.0 Hz, 2 H), 7.12 (d, J = 5.1 

Hz, 1 H), 6.95-6.90 (m, 1 H), 6.90-6.84 (m, 1 H), 6.81 (s, 1 H), 6.72 (t, J = 8.1 Hz, 3 H), 6.52 

(t, J = 6.7 Hz, 1 H), 4.12-4.03 (m, 2 H), 3.31-3.20 (m, 2 H); 13C NMR (100 MHz, CDCl3) δ 

149.0, 141.8, 132.7, 130.5, 129.4, 128.2, 127.1, 126.2, 125.0, 124.5, 123.6, 123.2, 122.6, 

120.2, 118.6, 117.0, 112.9, 110.6, 108.2, 54.1, 28.8; HRMS (EI) calcd for C24H20N2S 
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369.1420, found 369.1414. 

1-[3-(Phenyl(pyrido[1,2-α]indol-10-yl)amino)propyl]pyrrolidin-2-one (24) 

N N
Ph

N

O  This compound was obtained as an orange oil (57.8 mg, 60%): 

1H NMR (400 MHz, CDCl3) δ 8.36 (d, J = 7.1 Hz, 1 H), 7.94 (d, J = 7.5 Hz, 1 H), 7.54 (d, J 

= 6.9 Hz, 1 H), 7.32 (t, J = 6.0 Hz, 2 H), 7.25 (d, J = 9.7 Hz, 1 H), 7.13 (t, J = 7.8 Hz, 2 H), 

6.87 (dd, J = 9.3, 6.4 Hz, 1 H), 6.67 (dd, J = 21.0, 7.7 Hz, 3 H), 6.50 (t, J = 6.8 Hz, 1 H), 3.31 

(t, J = 7.4 Hz, 2 H), 3.81 (t, J = 7.7 Hz, 2 H), 3.22 (t, J = 7.0 Hz, 2 H), 2.33 (t, J = 8.2 Hz, 2 

H), 1.92 (t, J = 7.6 Hz, 4 H); 13C NMR (100 MHz, CDCl3) δ 175.1, 149.3, 132.6, 129.3, 

128.1, 126.2, 124.5, 123.2, 122.6, 120.2, 118.6, 117.0, 116.9, 112.9, 110.7, 110.6, 108.2, 

49.7, 47.2, 40.7, 31.2, 26.4, 18.0; HRMS (EI) calcd for C25H26N3O 384.2070, found 

384.2063. 

N1,N2-Diphenyl-N1,N2-di(pyrido[1,2-α]indol-10-yl)ethane-1,2-diamine (26) 

N

N
Ph

N
Ph

N

 This compound was obtained as a yellow solid (69.2 mg, 51%): 

mp 268-271 ºC; 1H NMR (400 MHz, CDCl3) δ 8.33 (d, J = 7.1 Hz, 2 H), 7.98- 7.85 (m, 2 H), 

7.60-7.45 (m, 2 H), 7.40-7.28 (m, 4 H), 7.17 (d, J = 9.2 Hz, 2 H), 6.96 (dd, J = 8.6, 7.1 Hz, 4 

H), 6.80 (dd, J = 9.0, 6.6 Hz, 2 H), 6.59 (t, J = 7.3 Hz, 2 H), 6.48 (dd, J = 11.2, 7.4 Hz, 6 H), 
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4.15 (s, 4 H); 13C NMR (100 MHz, CDCl3) δ 149.2, 132.6, 129.2, 128.2, 126.1, 124.5, 123.2, 

122.6, 120.1, 118.4, 116.9, 112.8, 110.7, 110.6, 108.1, 50.3; HRMS (EI) calcd for C38H30N4 

542.2465, found 542.2472. 

7-Bromo-N-(tert-butyl)-N-phenylpyrido[1,2-a]indol-10-amine (28) 

N N
Ph

tBu

Br

This compound was obtained as an orange oil in a 34% yield (NMR 

yield based on the addition of 1,4-dimethoxybenzene as an internal standard): 1H NMR (400 

MHz, CDCl3) δ 8.44 (s, 1 H), 7.85 (d, J = 8.1 Hz, 1 H), 7.71 (d, J = 8.1 Hz, 1 H), 7.33 (dt, J 

= 18.6, 8.6 Hz, 3 H), 7.05 (t, J = 8.0 Hz, 2 H), 6.87 (t, J = 8.2 Hz, 3 H), 6.69 (t, J = 7.2 Hz, 1 

H), 1.52 (s, 9 H); 13C NMR (100 MHz, CDCl3) δ 149.3, 132.5, 128.7, 128.4, 127.8, 125.5, 

124.4, 123.5, 120.9, 119.8, 119.3, 118.7, 118.0, 114.1, 110.4, 102.5, 57.6, 30.4; HRMS (EI) 

calcd for C22H21BrN2 392.0883, found 392.0892. 

7-Fluoro-N-(tert-butyl)-N-phenylpyrido[1,2-a]indol-10-amine (30) 

N N
Ph

tBu

F

This compound was obtained as an orange solid in a 22% yield (NMR 

yield based on the addition of 1,4-dimethoxybenzene as an internal standard): mp 104-105 

ºC; 1H NMR (400 MHz, CDCl3) δ 8.21 (d, J = 3.3 Hz, 1 H), 7.80 (d, J = 8.0 Hz, 1 H), 7.72 

(d, J = 7.7 Hz, 1 H), 7.34 (ddd, J = 24.9, 12.8, 6.3 Hz, 3 H), 7.05 (t, J = 8.0 Hz, 2 H), 6.88 (d, 
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J = 8.1 Hz, 2 H), 6.81 (t, J = 7.9 Hz, 1 H), 6.68 (t, J = 7.3 Hz, 1 H), 1.53 (s, 9 H); 13C NMR 

(100 MHz, CDCl3) δ 152.6, 150.3, 149.4, 132.4, 128.9, 128.4, 123.0, 120.5, 120.0, 119.4, 

118.9, 118.8, 118.0, 115.7, 115.4, 113.7, 110.4, 110.3, 109.9, 57.6, 30.4 (extra peaks due to 

13C-19F coupling); HRMS (EI) calcd for C22H21FN2 333.1762, found 333.1754. 

N-(tert-Butyl)-N-phenylindolo[1,2-a]quinolin-7-amine (34) 

N N
Ph

tBu

 This compound was obtained as a yellow oil (68.3 mg, 75%): 1H NMR 

(400 MHz, CDCl3) δ 8.60 (d, J = 8.3 Hz, 1 H), 8.50 (d, J = 8.5 Hz, 1 H), 7.76 (d, J = 7.8 Hz, 

1 H), 7.63 (t, J = 8.5 Hz, 2 H), 7.44 (t, J = 7.6 Hz, 1 H), 7.40-7.30 (m, 3 H), 7.08 (dd, J = 

14.5, 8.9 Hz, 3 H), 6.90 (d, J = 8.1 Hz, 2 H), 6.69 (t, J = 7.2 Hz, 1 H), 1.59 (s, 9 H); 13C 

NMR (100 MHz, CDCl3) δ 149.1, 137.0, 134.7, 131.7 129.8, 129.1 129.0, 128.5, 124.8 

124.2, 123.0, 122.2, 119.9, 118.42, 117.8, 117.5, 116.8, 115.7, 114.5, 57.5, 30.4; HRMS (EI) 

calcd for C26H24N2 365.2012, found 365.2003. 

N-(tert-Butyl)-N-phenylthiazolo[3,2-α]indol-9-amine (36) 

N N
Ph

tBu

S

 This compound was obtained as a colorless solid (21.7 mg, 27%): mp 102-103 

ºC; 1H NMR (400 MHz, CDCl3) δ 7.64 (d, J = 4.2 Hz, 1 H), 7.60 (d, J = 7.8 Hz, 2 H), 7.21 (t, 

J = 7.4 Hz, 1 H), 7.15 (t, J = 7.6 Hz, 1 H), 7.08 (dt, J = 16.6, 8.2 Hz, 4 H), 6.77 (t, J = 6.9 Hz, 

1 H), 6.53 (d, J = 4.2 Hz, 1 H), 1.51 (s, 9 H); 13C NMR (100 MHz, CDCl3) δ 148.7, 136.3, 
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132.2, 128.4, 128.2, 121.8, 121.5, 119.6, 119.1, 118.7, 114.9, 110.3, 108.8, 108.7, 58.4, 30.5; 

HRMS (EI) calcd for C20H20N2S 321.1420, found 321.1421. 

N-(tert-Butyl)-1-methoxy-N-(3-methoxyphenyl)pyrido[1,2-α]indol-10-amine (39) 

N N

OMe

tBu

OMe

This compound was obtained as a yellow oil (75.0 mg, 80%): 1H NMR 

(400 MHz, CDCl3) δ 8.21 (d, J = 7.2 Hz, 1 H), 7.48 (d, J = 8.3 Hz, 1 H), 7.27 (d, J = 10.3 Hz, 

1 H), 7.20 (t, J = 8.0 Hz, 1 H), 6.92 (t, J = 8.2 Hz, 1 H), 6.80-6.69 (m, 2 H), 6.47-6.33 (m, 

3H), 6.18 (dd, J = 7.8, 2.0 Hz, 1 H), 3.84 (s, 3 H), 3.66 (s, 3 H), 1.52 (s, 9 H); 13C NMR (100 

MHz, CDCl3) δ 159.7, 154.2, 151.4, 133.0, 129.2, 128.4, 124.0, 121.7, 120.6, 30.0, 119.9, 

118.1, 111.4, 111.3, 108.4, 104.7, 103.3, 102.5, 100.4, 57.8, 55.4, 55.1; HRMS (EI) calcd for 

C24H27N2O2 375.2067, found 375.2060. 
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CHAPTER 8 

 

General Conclusions 

  

Over the course of the work described in this dissertation, several novel 

methodologies have been successfully developed and applied to the synthesis of medicinally-

relevant heterocycles, including indoles, benzo[b]furans, 1,2-dihydroisoquinolines, 1H-

indazoles, and pyrido[1,2-a]indoles. In these methods, well-studied transition metal-

catalyzed processes and newly discovered aryne-mediated processes have been found 

applicable and efficient when applied to the synthesis of a variety of heterocycles. Most of 

these processes have also been transformed into multicomponent processes. As a result of 

this work, a novel three-component reaction of indoles, 2-alkynylbenzaldehydes and amines 

has been discovered and a library of over a hundred 1,2-dihydroisoquinolines has been 

prepared and sent out for biological testing. A novel method for the synthesis of 2,3-

disubstituted indoles and N-methylindoles under Sonogashira conditions has been developed 

and applied to the synthesis of 24 indole scaffolds. A related method for the synthesis of 2,3-

disubstituted benzofurans under Sonogashira conditions has also been optimized and 

successfully applied to the synthesis of a variety of medicinally-relevant benzofurans. A total 

synthesis of naturally-occurring oligostilbenes has been initiated based on the methodology 

developed and significant progress has been made in that direction. A one-pot method for the 

synthesis of 1-alkyl-1H-indazoles has been developed utilizing the reaction between 1,1-

dialkylhydrazones, NCS and arynes. This process proved to be efficient and resulted in the 
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synthesis of 13 indazoles, as well as several interesting extensions. Finally, the synthesis of a 

small library of medicinally-relevant pyrido[1,2-a]indoles has been accomplished by the 

reaction of arynes with 2-substituted pyridines. A three-component version of this 

methodology has also proved successful. 

The variety and notable efficiency of the methods developed illustrates the incredible 

potential that lies in the thoughtful combination of already known and well-studied 

approaches for the generation of complex molecules in a one-pot fashion from readily 

available starting materials.   

The number of publications on multicomponent and combinatorial chemistry has 

grown immensely in the last few decades. The number of the new methods that have been 

developed during these years is even greater. One can expect an explosion in the growth in 

the field of multicomponent reactions in the near future, resulting in the gradual 

transformation of known methods of organic syntheses into greener, highly efficient and 

waste-free strategies. 
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